A compact single channel interferometer to study vortex beam propagation through scattering layers

We propose and demonstrate a single channel interferometer that can be used to study how vortex beams propagate through a scatterer. The interferometer consists of a multifunctional diffractive optical element (MDOE) synthesized by the spatial random multiplexing of a Fresnel zone plate and a spiral...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 10; no. 1; p. 296
Main Authors Lathika, Sruthy J, Anand, Vijayakumar, Bhattacharya, Shanti
Format Journal Article
LanguageEnglish
Published England Nature Publishing Group 15.01.2020
Nature Publishing Group UK
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We propose and demonstrate a single channel interferometer that can be used to study how vortex beams propagate through a scatterer. The interferometer consists of a multifunctional diffractive optical element (MDOE) synthesized by the spatial random multiplexing of a Fresnel zone plate and a spiral Fresnel zone plate with different focal lengths. The MDOE generates two co-propagating beams, such that only the beam carrying orbital angular momentum is modulated by an annular stack of thin scatterers located at the focal plane of the Fresnel zone plate, while the other beam passes through the centre of the annulus without any modulation. The interference pattern is recorded at the focal plane of the spiral Fresnel zone plate. The scattering of vortex beams through stacks consisting of different number of thin scatterers was studied using the proposed optical setup. Conflicting results have been reported earlier on whether higher or lower charge beams suffer more deterioration. The proposed interferometer provides a relatively simple and compact means of experimentally studying propagation of vortex beams through scattering medium.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-019-56795-z