Observer-Based Control of Discrete-Time LPV Systems With Uncertain Parameters

In this note, linear matrix inequality-based design conditions are presented for observer-based controllers that stabilize discrete-time linear parameter-varying systems in the situation where the parameters are not exactly known, but are only available with a finite accuracy. The presented framewor...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 55; no. 9; pp. 2130 - 2135
Main Authors Heemels, W P M H, Daafouz, J, Millerioux, G
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.09.2010
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this note, linear matrix inequality-based design conditions are presented for observer-based controllers that stabilize discrete-time linear parameter-varying systems in the situation where the parameters are not exactly known, but are only available with a finite accuracy. The presented framework allows to make tradeoffs between the admissible level of parameter uncertainty on the one hand and the transient performance on the other. In addition, the level of parameter uncertainty can be maximized while still guaranteeing closed-loop stability.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2010.2051072