Variants of Non-Negative Least-Mean-Square Algorithm and Convergence Analysis

Due to the inherent physical characteristics of systems under investigation, non-negativity is one of the most interesting constraints that can usually be imposed on the parameters to estimate. The Non-Negative Least-Mean-Square algorithm (NNLMS) was proposed to adaptively find solutions of a typica...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 62; no. 15; pp. 3990 - 4005
Main Authors Jie Chen, Richard, Cedric, Bermudez, Jose-Carlos M., Honeine, Paul
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.08.2014
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Due to the inherent physical characteristics of systems under investigation, non-negativity is one of the most interesting constraints that can usually be imposed on the parameters to estimate. The Non-Negative Least-Mean-Square algorithm (NNLMS) was proposed to adaptively find solutions of a typical Wiener filtering problem but with the side constraint that the resulting weights need to be non-negative. It has been shown to have good convergence properties. Nevertheless, certain practical applications may benefit from the use of modified versions of this algorithm. In this paper, we derive three variants of NNLMS. Each variant aims at improving the NNLMS performance regarding one of the following aspects: sensitivity of input power, unbalance of convergence rates for different weights and computational cost. We study the stochastic behavior of the adaptive weights for these three new algorithms for non-stationary environments. This study leads to analytical models to predict the first and second order moment behaviors of the weights for Gaussian inputs. Simulation results are presented to illustrate the performance of the new algorithms and the accuracy of the derived models.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2014.2332440