Exploiting Spatial Redundancy of Image Sensor for Motion Robust rPPG

Remote photoplethysmography (rPPG) techniques can measure cardiac activity by detecting pulse-induced color variations on human skin using an RGB camera. State-of-the-art rPPG methods are sensitive to subject body motions (e.g., motion-induced color distortions). This study proposes a novel framewor...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 62; no. 2; pp. 415 - 425
Main Authors Wang, Wenjin, Stuijk, Sander, de Haan, Gerard
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Remote photoplethysmography (rPPG) techniques can measure cardiac activity by detecting pulse-induced color variations on human skin using an RGB camera. State-of-the-art rPPG methods are sensitive to subject body motions (e.g., motion-induced color distortions). This study proposes a novel framework to improve the motion robustness of rPPG. The basic idea of this paper originates from the observation that a camera can simultaneously sample multiple skin regions in parallel, and each of them can be treated as an independent sensor for pulse measurement. The spatial redundancy of an image sensor can thus be exploited to distinguish the pulse signal from motion-induced noise. To this end, the pixel-based rPPG sensors are constructed to estimate a robust pulse signal using motion-compensated pixel-to-pixel pulse extraction, spatial pruning, and temporal filtering. The evaluation of this strategy is not based on a full clinical trial, but on 36 challenging benchmark videos consisting of subjects that differ in gender, skin types, and performed motion categories. Experimental results show that the proposed method improves the SNR of the state-of-the-art rPPG technique from 3.34 to 6.76 dB, and the agreement (±1.96σ) with instantaneous reference pulse rate from 55% to 80% correct. ANOVA with post hoc comparison shows that the improvement on motion robustness is significant. The rPPG method developed in this study has a performance that is very close to that of the contact-based sensor under realistic situations, while its computational efficiency allows real-time processing on an off-the-shelf computer.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0018-9294
1558-2531
DOI:10.1109/TBME.2014.2356291