Microscopic fringe projection profilometry: A review
•An overview of the state-of-the-art microscopic fringe projection profilometry (MFPP) works is provided.•Measurement principles, systems structures, and key performance indexes of MFPP systems are analyzed and compared.•The potential applications of MFPP are discussed.•Some recommendations about op...
Saved in:
Published in | Optics and lasers in engineering Vol. 135; p. 106192 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •An overview of the state-of-the-art microscopic fringe projection profilometry (MFPP) works is provided.•Measurement principles, systems structures, and key performance indexes of MFPP systems are analyzed and compared.•The potential applications of MFPP are discussed.•Some recommendations about optimum MFPP optical system design are provided.
Structured light three-dimensional (3D) measurement technology is considered one of the most reliable 3D data acquisition methods. Driven by the demand for high-precision 3D data acquisition for miniaturized samples in many fields such as surface condition analysis, mechanical function test, and micro-electro-mechanical systems (MEMS) quality inspection, microscopic fringe projection profilometry (MFPP) has been developed rapidly during recent decades. Significant progress has been made in different aspects of MFPP, including its optical configurations, corresponding system calibrations, phase retrieval algorithms, and 3D coordinate reconstruction methods. In addition, the rapid advance in high-frame-rate image sensors, high-speed digital projection technology, and high-performance processors become a powerful vehicle that motivates MFPP techniques to be increasingly applied in high-speed, real-time 3D shape measurement of dynamic samples. In this paper, we present an overview of these state-of-the-art MFPP works by analyzing and comparing the measurement principles, systems structures, and key performance indexes such as the accuracy, field of view (FOV), and speed. We also discuss the potential applications of MFPP and give some recommendations about optimum MFPP optical system design for reference in related applications in the future. |
---|---|
AbstractList | •An overview of the state-of-the-art microscopic fringe projection profilometry (MFPP) works is provided.•Measurement principles, systems structures, and key performance indexes of MFPP systems are analyzed and compared.•The potential applications of MFPP are discussed.•Some recommendations about optimum MFPP optical system design are provided.
Structured light three-dimensional (3D) measurement technology is considered one of the most reliable 3D data acquisition methods. Driven by the demand for high-precision 3D data acquisition for miniaturized samples in many fields such as surface condition analysis, mechanical function test, and micro-electro-mechanical systems (MEMS) quality inspection, microscopic fringe projection profilometry (MFPP) has been developed rapidly during recent decades. Significant progress has been made in different aspects of MFPP, including its optical configurations, corresponding system calibrations, phase retrieval algorithms, and 3D coordinate reconstruction methods. In addition, the rapid advance in high-frame-rate image sensors, high-speed digital projection technology, and high-performance processors become a powerful vehicle that motivates MFPP techniques to be increasingly applied in high-speed, real-time 3D shape measurement of dynamic samples. In this paper, we present an overview of these state-of-the-art MFPP works by analyzing and comparing the measurement principles, systems structures, and key performance indexes such as the accuracy, field of view (FOV), and speed. We also discuss the potential applications of MFPP and give some recommendations about optimum MFPP optical system design for reference in related applications in the future. |
ArticleNumber | 106192 |
Author | Feng, Shijie Hu, Yan Chen, Qian Zuo, Chao |
Author_xml | – sequence: 1 givenname: Yan surname: Hu fullname: Hu, Yan organization: Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China – sequence: 2 givenname: Qian surname: Chen fullname: Chen, Qian email: chenqian@njust.edu.cn organization: Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China – sequence: 3 givenname: Shijie surname: Feng fullname: Feng, Shijie organization: Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China – sequence: 4 givenname: Chao surname: Zuo fullname: Zuo, Chao email: zuochao@njust.edu.cn organization: Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China |
BookMark | eNqNkE1Lw0AQhhepYFr9DeYPpO6Xm0TwEIpWoeJFz8tmMls2pNmwG5T-exMqHrzoaYaB5-WdZ0kWve-RkGtG14wyddOu_TB2JmK_X3PK56tiJT8jCStykVFB-YIklEmRFUypC7KMsaUTKRlLiHxxEHwEPzhIbXD9HtMh-BZhdL6fV-s6f8AxHO_SKg344fDzkpxb00W8-p4r8v748LZ5ynav2-dNtctACjpmktX5bV1DAwJrVVpqCiFl2dhGcdkYCSXjpUJpZV5DTY3gwipRSkVtISxwsSL3p9y5YgxoNbjRzMXGYFynGdWzAt3qHwV6VqBPCiY-_8UPwR1MOP6DrE4kTu9NLwcdwWEP2LgwqdGNd39mfAFEFX5z |
CitedBy_id | crossref_primary_10_1080_17415993_2021_1887189 crossref_primary_10_1109_TIM_2022_3196738 crossref_primary_10_1016_j_measurement_2022_112321 crossref_primary_10_1364_AO_538646 crossref_primary_10_1007_s00170_022_09084_5 crossref_primary_10_1007_s12633_020_00883_7 crossref_primary_10_1109_TIM_2023_3284140 crossref_primary_10_1140_epjp_s13360_021_01706_3 crossref_primary_10_1364_OE_449468 crossref_primary_10_1117_1_AP_5_2_026003 crossref_primary_10_1016_j_optlaseng_2021_106822 crossref_primary_10_1016_j_comptc_2021_113299 crossref_primary_10_1093_jcde_qwab026 crossref_primary_10_1063_5_0165363 crossref_primary_10_1016_j_optlaseng_2024_108049 crossref_primary_10_3390_s21082574 crossref_primary_10_1109_TIM_2023_3332934 crossref_primary_10_3390_rs15092333 crossref_primary_10_3390_s24165157 crossref_primary_10_1109_TIM_2024_3522660 crossref_primary_10_1364_AO_413586 crossref_primary_10_1007_s00340_022_07919_3 crossref_primary_10_1007_s12647_024_00774_x crossref_primary_10_3390_s23020680 crossref_primary_10_1007_s00340_023_08142_4 crossref_primary_10_1364_AO_488041 crossref_primary_10_1016_j_optlaseng_2023_107866 crossref_primary_10_1016_j_optlaseng_2023_107623 crossref_primary_10_1007_s13204_021_01779_7 crossref_primary_10_1364_JOSAB_421756 crossref_primary_10_1109_TIM_2024_3390210 crossref_primary_10_1007_s00366_021_01390_y crossref_primary_10_1080_09500340_2023_2206928 crossref_primary_10_1016_j_knosys_2021_107529 crossref_primary_10_1109_TIM_2025_3547118 crossref_primary_10_1360_SST_2024_0082 crossref_primary_10_3390_agronomy15010029 crossref_primary_10_1016_j_ijhydene_2021_02_070 crossref_primary_10_1364_PRJ_451818 crossref_primary_10_1016_j_optlaseng_2023_107620 crossref_primary_10_1080_15397734_2021_1919526 crossref_primary_10_1007_s11082_021_02973_1 crossref_primary_10_1007_s42823_022_00338_6 crossref_primary_10_1364_JOSAB_418804 crossref_primary_10_1016_j_oceaneng_2024_117426 crossref_primary_10_1103_PhysRevApplied_18_034055 crossref_primary_10_1140_epjp_s13360_021_01761_w crossref_primary_10_1080_15397734_2021_1907758 crossref_primary_10_3390_photonics9030148 crossref_primary_10_1007_s10668_021_01382_4 crossref_primary_10_1016_j_optcom_2024_131134 crossref_primary_10_1109_TMECH_2024_3396222 crossref_primary_10_1016_j_ijleo_2022_170263 crossref_primary_10_1007_s00170_021_07330_w crossref_primary_10_1007_s00366_021_01363_1 crossref_primary_10_1364_AO_445063 crossref_primary_10_1364_OE_439825 crossref_primary_10_1109_TMECH_2023_3334717 crossref_primary_10_1007_s00366_021_01288_9 crossref_primary_10_1016_j_csite_2021_100939 crossref_primary_10_1364_OE_461174 crossref_primary_10_1016_j_egyr_2021_06_064 crossref_primary_10_1088_1402_4896_ad9c22 crossref_primary_10_1364_OE_452361 crossref_primary_10_1364_OE_466069 crossref_primary_10_3788_IRLA20220088 crossref_primary_10_1088_2051_672X_ac6ff8 crossref_primary_10_1016_j_tws_2021_108101 crossref_primary_10_1364_OE_448019 crossref_primary_10_1007_s00366_021_01450_3 crossref_primary_10_1016_j_measurement_2024_115529 crossref_primary_10_1016_j_optlaseng_2022_107342 crossref_primary_10_1016_j_measurement_2023_113609 crossref_primary_10_1364_OE_470564 crossref_primary_10_1364_OL_516093 crossref_primary_10_1007_s11468_021_01399_5 crossref_primary_10_1016_j_measurement_2021_109675 crossref_primary_10_1016_j_optlaseng_2022_107183 crossref_primary_10_1016_j_optlaseng_2023_107482 crossref_primary_10_1016_j_gsf_2021_101230 crossref_primary_10_1140_epjp_s13360_021_01840_y crossref_primary_10_1016_j_ejrh_2021_100848 crossref_primary_10_1016_j_optlaseng_2023_107884 crossref_primary_10_3390_computers13110290 crossref_primary_10_1080_15397734_2021_1903493 crossref_primary_10_1016_j_optcom_2025_131591 crossref_primary_10_1007_s00542_023_05426_9 crossref_primary_10_1007_s00366_021_01420_9 crossref_primary_10_1117_1_OE_63_10_104104 crossref_primary_10_1007_s11224_021_01799_7 crossref_primary_10_1016_j_optlastec_2024_112324 crossref_primary_10_1364_AO_438037 crossref_primary_10_1016_j_measurement_2022_112247 crossref_primary_10_1364_AO_507420 crossref_primary_10_3390_electronics10222871 crossref_primary_10_1109_LPT_2023_3296912 crossref_primary_10_1016_j_ast_2021_106846 crossref_primary_10_1080_17455030_2021_1926572 crossref_primary_10_1007_s00500_021_05839_6 crossref_primary_10_1142_S0129183121501412 crossref_primary_10_1007_s12633_021_01081_9 crossref_primary_10_3390_photonics8120592 crossref_primary_10_1016_j_neucom_2024_127493 crossref_primary_10_1186_s40537_024_00901_0 crossref_primary_10_1016_j_optlaseng_2021_106622 crossref_primary_10_1007_s00894_021_04727_y crossref_primary_10_1007_s00138_022_01355_1 crossref_primary_10_1016_j_precisioneng_2021_09_004 crossref_primary_10_1080_17455030_2021_1938285 crossref_primary_10_3389_feart_2021_663678 crossref_primary_10_1364_AO_517997 crossref_primary_10_1364_OE_524898 crossref_primary_10_1016_j_compbiomed_2021_104427 crossref_primary_10_3390_app11094143 crossref_primary_10_1016_j_optlastec_2024_110679 crossref_primary_10_1371_journal_pone_0251744 crossref_primary_10_1364_OL_498283 crossref_primary_10_1016_j_optlaseng_2022_106990 crossref_primary_10_1080_03067319_2021_1882448 crossref_primary_10_3390_s23156663 crossref_primary_10_1016_j_jmrt_2020_12_061 crossref_primary_10_1080_10106049_2021_1926558 crossref_primary_10_1364_OE_549266 crossref_primary_10_1364_OE_506370 crossref_primary_10_3390_s22249805 crossref_primary_10_1088_1742_6596_2478_6_062015 crossref_primary_10_1088_1742_6596_2478_6_062014 crossref_primary_10_1117_1_OE_61_8_084102 crossref_primary_10_1007_s00366_021_01440_5 crossref_primary_10_1080_15397734_2021_1878904 crossref_primary_10_1109_TIM_2023_3331396 crossref_primary_10_1007_s10853_024_09726_x crossref_primary_10_1166_jbmb_2021_2025 crossref_primary_10_1017_S1431927621013829 crossref_primary_10_1364_PRJ_455574 crossref_primary_10_1007_s13204_021_01728_4 crossref_primary_10_1016_j_eti_2021_101498 crossref_primary_10_1007_s12596_024_02283_1 crossref_primary_10_1364_AO_499736 crossref_primary_10_1364_AO_493941 crossref_primary_10_1088_1402_4896_ac018a crossref_primary_10_1117_1_OE_63_1_018101 crossref_primary_10_29026_oea_2022_210021 crossref_primary_10_1007_s00366_021_01388_6 crossref_primary_10_1016_j_egyr_2021_05_002 crossref_primary_10_1016_j_optlaseng_2025_108900 crossref_primary_10_1007_s10825_021_01726_3 crossref_primary_10_1109_TIM_2024_3427804 crossref_primary_10_3390_s24092872 crossref_primary_10_1016_j_energy_2021_120621 crossref_primary_10_1109_TIM_2023_3277991 crossref_primary_10_1155_2021_7646813 crossref_primary_10_1007_s13204_021_01845_0 crossref_primary_10_1016_j_optlastec_2021_107189 crossref_primary_10_1364_AO_483735 crossref_primary_10_1016_j_jmrt_2021_03_048 crossref_primary_10_3390_s24144733 crossref_primary_10_3390_machines13040261 crossref_primary_10_1364_OE_555002 crossref_primary_10_1016_j_optlaseng_2021_106793 crossref_primary_10_3390_photonics9030173 crossref_primary_10_1007_s00366_021_01377_9 crossref_primary_10_1142_S0129183121501047 crossref_primary_10_1016_j_optlaseng_2023_107967 crossref_primary_10_1007_s13399_021_01273_8 crossref_primary_10_3390_photonics9120986 crossref_primary_10_1109_JSEN_2023_3280166 crossref_primary_10_1038_s41467_024_46267_y crossref_primary_10_1109_TII_2024_3507177 crossref_primary_10_1364_AO_461168 crossref_primary_10_1364_OPTCON_485013 |
Cites_doi | 10.1364/AO.33.007477 10.1016/j.ijleo.2013.03.070 10.1364/OL.35.000934 10.1364/AO.41.004503 10.1364/OE.25.019408 10.1109/JRA.1987.1087109 10.1016/j.optcom.2014.04.067 10.1364/AO.57.00A181 10.1016/j.optlaseng.2016.01.011 10.1109/ACCESS.2019.2913181 10.1016/S0030-4018(02)02290-3 10.1364/AO.51.004477 10.1364/AO.43.002695 10.1117/1.602347 10.1364/OL.36.001257 10.1016/S0030-3992(02)00070-1 10.5772/63825 10.1117/1.2147311 10.1364/OE.20.019493 10.1364/AO.26.002810 10.1364/AO.38.006565 10.1364/AO.48.001052 10.1016/j.ijleo.2008.05.010 10.1109/34.888718 10.1364/AO.54.004953 10.1364/OE.25.031492 10.1364/OE.23.006846 10.1016/j.optlaseng.2008.08.003 10.1364/AO.57.000772 10.1063/1.95048 10.1364/OL.38.001389 10.1117/1.602438 10.1088/1361-6501/aa5a2d 10.1117/1.601576 10.1016/j.optlaseng.2016.04.009 10.1364/AO.26.002504 10.1364/OE.23.025795 10.1016/j.optlaseng.2009.12.016 10.1016/j.optlaseng.2009.06.005 10.1117/1.2802546 10.1016/j.optlaseng.2018.04.019 10.1364/AO.23.003105 10.1364/AO.41.005896 10.1364/AO.54.010055 10.1109/21.44067 10.1088/1361-6501/aa7277 10.1364/AO.51.000861 10.1364/OPEX.13.003110 10.1016/j.optlaseng.2014.01.021 10.1016/j.optlaseng.2016.04.022 10.1117/1.2336196 10.1016/j.optlaseng.2014.09.008 10.1016/S0143-8166(01)00023-9 10.1364/AO.54.006865 10.1364/AO.57.002352 10.1016/j.optlaseng.2016.06.009 10.1117/1.1871832 10.1016/j.optlaseng.2013.02.012 10.1080/09500340.2016.1168493 10.1117/1.OE.52.1.013605 10.1016/j.optlaseng.2009.03.012 10.1016/j.wear.2005.09.036 10.1364/OL.32.002438 10.1364/OE.25.020381 10.1117/1.3099720 10.1016/j.optlaseng.2012.12.008 10.1117/1.1385509 10.1016/j.ijleo.2009.01.007 10.1088/1742-6596/13/1/034 10.1117/12.55746 10.1364/OE.24.001222 10.1016/j.optlaseng.2014.03.003 10.1088/1361-6501/ab35a1 10.1016/j.optlaseng.2018.09.011 10.1016/j.optlaseng.2009.09.001 10.1016/j.ijleo.2016.11.156 10.1364/OL.35.003682 10.1016/S0030-4018(01)01038-0 10.1364/JOSAA.8.000822 10.1109/CVPR.2010.5540082 10.1364/AO.54.010541 10.1145/2788396 10.1016/S0079-6638(08)70178-1 10.1364/AO.39.006430 10.14358/PERS.81.2.103 10.1364/AO.49.001539 10.1016/j.optlaseng.2009.03.008 10.1080/15599610802438680 10.1364/AO.45.001688 10.1016/j.optlaseng.2013.08.002 10.1364/OE.22.031826 10.1016/j.optcom.2008.01.070 10.1117/12.888037 10.1364/OE.17.021867 10.1117/1.OE.51.2.027002 10.1364/JOSA.72.000156 10.1364/AO.46.000036 10.1364/OE.14.009120 10.1016/j.optlaseng.2019.05.019 10.1016/j.optlaseng.2017.10.013 10.1364/OE.24.020253 10.1364/AO.42.001773 |
ContentType | Journal Article |
Copyright | 2020 |
Copyright_xml | – notice: 2020 |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.optlaseng.2020.106192 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1873-0302 |
ExternalDocumentID | 10_1016_j_optlaseng_2020_106192 S0143816619319815 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMV HVGLF HZ~ IHE J1W JJJVA KOM LY7 M38 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SPG SSM SSQ SST SSZ T5K VOH WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c430t-41b75bbcdc3eb69f0a83449dfd624da4c91296e4f47bcb0a323f639460f83fc23 |
IEDL.DBID | .~1 |
ISSN | 0143-8166 |
IngestDate | Thu Apr 24 22:52:21 EDT 2025 Tue Jul 01 00:32:35 EDT 2025 Fri Feb 23 02:45:10 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Microscopic Fringe projection Three-dimensional sensing Optical metrology |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c430t-41b75bbcdc3eb69f0a83449dfd624da4c91296e4f47bcb0a323f639460f83fc23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0143816619319815 |
ParticipantIDs | crossref_citationtrail_10_1016_j_optlaseng_2020_106192 crossref_primary_10_1016_j_optlaseng_2020_106192 elsevier_sciencedirect_doi_10_1016_j_optlaseng_2020_106192 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2020 2020-12-00 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationTitle | Optics and lasers in engineering |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Hariharan, Oreb, Eiju (bib0102) 1987; 26 Zuo, Huang, Zhang, Chen, Asundi (bib0109) 2016; 85 (accessed January 31, 2020). Zhang (bib0038) 2010; 48 Lai, Yatagai (bib0108) 1991; 8 (accessed November 24, 2019). Mittal, Vetter (bib0121) 2015; 47 Hu, He, Wu (bib0137) 2010; 121 Zuo, Feng, Huang, Tao, Yin, Chen (bib0019) 2018; 109 Zhong, Li, Zhou, Zhan, Liu, Shi (bib0062) 2014 Liu, Lin, Yao (bib0081) 2017; 25 Zhu, Liu, Shi, He (bib0060) 2010; 48 Chen, Guo, Wang, Wu, Fu, Hu (bib0079) 2013 Wolfe, Chipman (bib0070) 2006; 45 Pawley (bib0012) 2010 Li, Zhong, Li, Zhou, Shi (bib0093) 2013; 38 Feng, Chen, Zuo, Li, Shen, Feng (bib0129) 2013; 52 High-resolution (bib0021) 2006; 45 Yin, Wang, Gao, Liu, Peng (bib0080) 2015; 23 Huang (bib0022) 2006; 45 DLP Overview | DLP Products | TI.com n.d. Ko¨rner (bib0067) 2001; 40 Feng, Zhang, Chen, Zuo, Li, Shen (bib0128) 2014; 59 Van der Jeught, Dirckx (bib0034) 2016; 87 Chen, Liao, Lai (bib0072) 2005; 13 Gardner, Varadan (bib0047) 2001 Su, Zhang (bib0099) 2010; 48 Steinchen, Yang (bib0009) 2003; 93 Proll, Nivet, Voland, Tiziani (bib0071) 2000; 39 Huang, Chua, Asundi (bib0115) 2010; 49 Hu, He (bib0131) 2009; 47 Tanaka, Sumi, Matsumoto (bib0118) 2014 Polyga - 3D Scanning Technologies for Professionals. Polyga n.d. Creath (bib0066) 1987; 26 Morrison G. DLP vs LCD vs LCoS: projector tech pros and cons. CNET n.d. Derpanis (bib0006) 2004 Zhang (bib0030) 2010; 35 Li, Liu, Tian (bib0059) 2014; 22 Dudley, Duncan, Slaughter (bib0069) 2003; 4985 Abdel-Aziz, Karara (bib0110) 2015; 81 Su X, Chen W. Fourier transform profilometry: a review. Opt Lasers Eng2001:22. Zuo, Chen, Feng, Feng, Gu, Sui (bib0028) 2012; 51 Tao, Chen, Da, Feng, Hu, Zuo (bib0063) 2016; 24 Sun, Zuo, Feng, Yu, Zhang, Chen (bib0026) 2015; 66 Schreiber, Notni (bib0024) 2000; 39 Abramovici, Emmert, Stroud (bib0003) 2001 Howard, Reed, Reed (bib0046) 2004 Zhang, Ma, Guo, Zhang, Chen (bib0116) 2011; 36 Yu, Huang, Zhang, Gao, Jiang (bib0075) 2014 Zhang, Yau (bib0103) 2007; 46 Scheffer, Nehring (bib0068) 1984; 45 Rao, Da, Kong, Huang (bib0090) 2016; 24 Sansoni, Carocci, Rodella (bib0031) 1999; 38 Zhang, Yau (bib0126) 2007; 46 Kreis (bib0011) 1996; 2 Quan, Tay, He, Kang, Shang (bib0077) 2002; 34 Wang, Nguyen, Barnes (bib0114) 2010; 48 Chen, He, Hu (bib0138) 2008; 281 Guo (bib0095) 2005; 44 Franca, Gazziro, Ide, Saito (bib0014) 2005; 1 Quan, He, Wang, Tay, Shang (bib0050) 2001; 189 Bergach, Kofman, de Simone, Tissot, Syska (bib0119) 2015 Lin, Su (bib0097) 1990; 29 Ke, Sukthankar (bib0007) 2004; 2 Zhang, Su (bib0065) 2005; 13 Qian (bib0018) 2004; 43 Heist, Kühmstedt, Tünnermann, Notni (bib0037) 2015; 54 Van der Jeught (bib0041) 2012; 51 Zuo, Chen, Feng, Gu, Asundi (bib0061) 2013; 11 Zuo, Tao, Feng, Huang, Asundi, Chen (bib0035) 2018; 102 Li, Hu, Tao, Feng, Zhang, Zhang (bib0033) 2018; 57 Long, Xi, Zhang, Zhu, Cheng, Li (bib0040) 2016; 63 Yao, Liu (bib0084) 2016; 13 Tsai RY.An efficient and accurate camera calibration technique for 3D machine vision. Proc IEEE Conf on Comput Vis Pattern Recognit1986:364–74. Wang, Zhang (bib0029) 2012; 51 Proll, Nivet, Körner, Tiziani (bib0053) 2003; 42 Zhang, Huang, Chiang (bib0051) 2002; 41 Electropages. DLP vs. LCD vs. LED vs. LCoS vs. laser: shedding light on projector technology n.d. Wang, Yin, Deng, Meng, Liu, Peng (bib0082) 2017; 25 Hu, Chen, Liang, Feng, Tao, Zuo (bib0139) 2019; 122 Hu, Feng, Tao, Zuo, Chen, Asundi (bib0089) 2018; 10827 Zhao, Liang, Diao, Jiang (bib0135) 2014; 54 Chen, Liao, Zhang (bib0092) 2014; 57 Raab S. Three dimensional coordinate measuring apparatus. US5402582A, 1995. Takeda, Ina, Kobayashi (bib0016) 1982; 72 Hu, Chen, Tao, Li, Zuo (bib0058) 2017; 28 CAI Z, LIU X, PENG X, YIN Y, LI A, WU J, et al. Structured light field 3D imaging n.d.:11. Li, Peng, Yin, Liu, Zhao, Körner (bib0052) 2013; 124 Zhang, Huang (bib0124) 2007; 46 Li, Zhang (bib0057) 2015; 23 Zuo, Chen, Gu, Feng, Feng, Li (bib0127) 2013; 51 Su, Li, Guo, Su, Grover (bib0130) 1989 Hartley, Zisserman (bib0083) 2004 Peng, Wang, Deng, Liu, Yin, Peng (bib0042) 2015; 54 Feng, Chen, Zuo (bib0120) 2015; 54 Jia, Kofman, English (bib0105) 2007; 46 Guo, Huang, Huang, Yoshizawa, Harding (bib0132) 2008 Zhong, Wang (bib0125) 1999; 38 Zhang (bib0055) 2000; 22 Zhang, Li, Ren, Dong (bib0091) 2019; 7 Srinivasan, Liu, Halioua (bib0100) 1984; 23 Li, Zhang (bib0064) 2017; 96 Haskamp K, Kästner M, Reithmeier E. Accurate calibration of a fringe projection system by considering telecentricity. In: Lehmann PH, Osten W, Gastinger K, editors., 2011, p. 80821B. doi:10.1117/12.888037. Hu, Chen, Feng, Tao, Li, Zuo (bib0025) 2017; 28 Yau (bib0134) 2009; 48 Qi, Wang, Huang, Xing, Gao (bib0039) 2018; 57 Lazaros (bib0005) 2008; 2 Wang, Du, Park, Xie (bib0020) 2009; 48 Servin, Estrada, Quiroga (bib0107) 2009; 17 Creath (bib0008) 1988; 26 Zhang, Chen, Tao, Feng, Hu, Li (bib0032) 2017; 25 Hu, Chen, Feng, Tao, Asundi, Zuo (bib0056) 2019; 113 Zhang, Royer, Yau (bib0122) 2006; 14 Li, Su, Guo (bib0106) 1990; 29 Chen, Brown, Song (bib0001) 2000; 39 Hu, Liang, Tao, Feng, Zuo, Zhang (bib0074) 2019; 30 Jones, Wykes (bib0010) 1989; 6 Li, Tian (bib0085) 2013; 51 Huang, Zhang, Chiang (bib0104) 2005; 44 Gorthi, Rastogi (bib0004) 2010; 48 DLP vs LCD vs LCoS Projector: Which should you buy? n.d. Sciammarella, Lamberti, Boccaccio (bib0015) 2008; 47 Van der Jeught, Soons, Dirckx (bib0076) 2015; 54 Huiyang, Zhong, Xianmin (bib0088) 2013 Wang, Wong, Hong (bib0078) 2006; 261 Kowarschik, Kuehmstedt, Gerber, Schreiber, Notni (bib0023) 2000; 39 Tsai (bib0111) 1987; 3 Ayubi, Ayubi, Martino, Ferrari (bib0027) 2010; 35 Bruning JH, Herriott DR, Gallagher JE, Rosenfeld DP, White AD, Brangaccio DJ. Digital wavefront measuring interferometer for testing optical surfaces and lenses n.d.:11. Li, Gibson, Middendorf, Wang, Zhang (bib0143) 2013 Leonhardt, Droste, Tiziani (bib0048) 1994; 33 Hu, He, Chen (bib0136) 2010; 121 Cui, Schuon, Chan, Thrun, Theobalt (bib0013) 2010 Dhond, Aggarwal (bib0094) 1989; 19 Zuo, Chen, Gu, Feng, Feng (bib0036) 2012; 20 Feng, Chen, Zuo, Sun, Yu (bib0123) 2014; 329 Du, Wang (bib0117) 2007; 32 Precise Industrial 3D Metrology. GOM n.d. Liu, Su, Reichard, Yin (bib0113) 2003; 216 Huang, Hu, Chiang (bib0101) 2002; 41 Guan, Yao, Liu, Shang (bib0086) 2017; 131 Hu, Chen, Zhang, Feng, Tao, Li (bib0073) 2018; 57 (accessed August 8, 2019). Li, Bu, Zhang (bib0043) 2016; 85 Windecker, Fleischer, Tiziani (bib0049) 1997; 36 Podder, Zaman Khan, Haque Khan, Muktadir Rahman (bib0098) 2014; 96 Zhang (10.1016/j.optlaseng.2020.106192_bib0065) 2005; 13 Tsai (10.1016/j.optlaseng.2020.106192_bib0111) 1987; 3 10.1016/j.optlaseng.2020.106192_bib0045 Proll (10.1016/j.optlaseng.2020.106192_bib0053) 2003; 42 10.1016/j.optlaseng.2020.106192_bib0044 Van der Jeught (10.1016/j.optlaseng.2020.106192_bib0041) 2012; 51 Leonhardt (10.1016/j.optlaseng.2020.106192_bib0048) 1994; 33 Du (10.1016/j.optlaseng.2020.106192_bib0117) 2007; 32 Peng (10.1016/j.optlaseng.2020.106192_bib0042) 2015; 54 Zhong (10.1016/j.optlaseng.2020.106192_bib0062) 2014 Li (10.1016/j.optlaseng.2020.106192_bib0093) 2013; 38 Zhong (10.1016/j.optlaseng.2020.106192_bib0125) 1999; 38 Zuo (10.1016/j.optlaseng.2020.106192_bib0028) 2012; 51 Abramovici (10.1016/j.optlaseng.2020.106192_bib0003) 2001 Van der Jeught (10.1016/j.optlaseng.2020.106192_bib0034) 2016; 87 Qi (10.1016/j.optlaseng.2020.106192_bib0039) 2018; 57 Quan (10.1016/j.optlaseng.2020.106192_bib0050) 2001; 189 Li (10.1016/j.optlaseng.2020.106192_bib0052) 2013; 124 Zhao (10.1016/j.optlaseng.2020.106192_bib0135) 2014; 54 Schreiber (10.1016/j.optlaseng.2020.106192_bib0024) 2000; 39 Su (10.1016/j.optlaseng.2020.106192_bib0130) 1989 Guo (10.1016/j.optlaseng.2020.106192_bib0132) 2008 10.1016/j.optlaseng.2020.106192_bib0054 Wolfe (10.1016/j.optlaseng.2020.106192_bib0070) 2006; 45 Hu (10.1016/j.optlaseng.2020.106192_bib0089) 2018; 10827 Lin (10.1016/j.optlaseng.2020.106192_bib0097) 1990; 29 Zuo (10.1016/j.optlaseng.2020.106192_bib0019) 2018; 109 Dudley (10.1016/j.optlaseng.2020.106192_bib0069) 2003; 4985 Sansoni (10.1016/j.optlaseng.2020.106192_bib0031) 1999; 38 Podder (10.1016/j.optlaseng.2020.106192_bib0098) 2014; 96 Zhang (10.1016/j.optlaseng.2020.106192_bib0122) 2006; 14 Hu (10.1016/j.optlaseng.2020.106192_bib0136) 2010; 121 Ayubi (10.1016/j.optlaseng.2020.106192_bib0027) 2010; 35 Hartley (10.1016/j.optlaseng.2020.106192_bib0083) 2004 Ke (10.1016/j.optlaseng.2020.106192_bib0007) 2004; 2 Sciammarella (10.1016/j.optlaseng.2020.106192_bib0015) 2008; 47 Qian (10.1016/j.optlaseng.2020.106192_bib0018) 2004; 43 Hu (10.1016/j.optlaseng.2020.106192_bib0137) 2010; 121 Ko¨rner (10.1016/j.optlaseng.2020.106192_bib0067) 2001; 40 Feng (10.1016/j.optlaseng.2020.106192_bib0120) 2015; 54 Tao (10.1016/j.optlaseng.2020.106192_bib0063) 2016; 24 Wang (10.1016/j.optlaseng.2020.106192_bib0029) 2012; 51 Hariharan (10.1016/j.optlaseng.2020.106192_bib0102) 1987; 26 Yin (10.1016/j.optlaseng.2020.106192_bib0080) 2015; 23 Windecker (10.1016/j.optlaseng.2020.106192_bib0049) 1997; 36 Zhang (10.1016/j.optlaseng.2020.106192_bib0055) 2000; 22 Hu (10.1016/j.optlaseng.2020.106192_bib0131) 2009; 47 Heist (10.1016/j.optlaseng.2020.106192_bib0037) 2015; 54 Zuo (10.1016/j.optlaseng.2020.106192_bib0061) 2013; 11 Hu (10.1016/j.optlaseng.2020.106192_bib0139) 2019; 122 Zhang (10.1016/j.optlaseng.2020.106192_bib0051) 2002; 41 Hu (10.1016/j.optlaseng.2020.106192_bib0056) 2019; 113 Lai (10.1016/j.optlaseng.2020.106192_bib0108) 1991; 8 Creath (10.1016/j.optlaseng.2020.106192_bib0066) 1987; 26 Chen (10.1016/j.optlaseng.2020.106192_bib0072) 2005; 13 Guan (10.1016/j.optlaseng.2020.106192_bib0086) 2017; 131 Bergach (10.1016/j.optlaseng.2020.106192_bib0119) 2015 Liu (10.1016/j.optlaseng.2020.106192_bib0081) 2017; 25 Zhu (10.1016/j.optlaseng.2020.106192_bib0060) 2010; 48 10.1016/j.optlaseng.2020.106192_bib0112 Chen (10.1016/j.optlaseng.2020.106192_bib0138) 2008; 281 Su (10.1016/j.optlaseng.2020.106192_bib0099) 2010; 48 Rao (10.1016/j.optlaseng.2020.106192_bib0090) 2016; 24 Takeda (10.1016/j.optlaseng.2020.106192_bib0016) 1982; 72 Li (10.1016/j.optlaseng.2020.106192_bib0143) 2013 Li (10.1016/j.optlaseng.2020.106192_bib0059) 2014; 22 High-resolution (10.1016/j.optlaseng.2020.106192_bib0021) 2006; 45 Yau (10.1016/j.optlaseng.2020.106192_bib0134) 2009; 48 Hu (10.1016/j.optlaseng.2020.106192_bib0058) 2017; 28 Howard (10.1016/j.optlaseng.2020.106192_bib0046) 2004 10.1016/j.optlaseng.2020.106192_bib0087 Zhang (10.1016/j.optlaseng.2020.106192_bib0103) 2007; 46 Cui (10.1016/j.optlaseng.2020.106192_bib0013) 2010 10.1016/j.optlaseng.2020.106192_bib0002 Scheffer (10.1016/j.optlaseng.2020.106192_bib0068) 1984; 45 Li (10.1016/j.optlaseng.2020.106192_bib0033) 2018; 57 Kreis (10.1016/j.optlaseng.2020.106192_bib0011) 1996; 2 Li (10.1016/j.optlaseng.2020.106192_bib0043) 2016; 85 Jia (10.1016/j.optlaseng.2020.106192_bib0105) 2007; 46 10.1016/j.optlaseng.2020.106192_bib0096 Li (10.1016/j.optlaseng.2020.106192_bib0064) 2017; 96 Dhond (10.1016/j.optlaseng.2020.106192_bib0094) 1989; 19 Servin (10.1016/j.optlaseng.2020.106192_bib0107) 2009; 17 Chen (10.1016/j.optlaseng.2020.106192_bib0079) 2013 10.1016/j.optlaseng.2020.106192_bib0133 Huang (10.1016/j.optlaseng.2020.106192_bib0104) 2005; 44 Huang (10.1016/j.optlaseng.2020.106192_bib0101) 2002; 41 Zhang (10.1016/j.optlaseng.2020.106192_bib0126) 2007; 46 Abdel-Aziz (10.1016/j.optlaseng.2020.106192_bib0110) 2015; 81 10.1016/j.optlaseng.2020.106192_bib0017 Yu (10.1016/j.optlaseng.2020.106192_bib0075) 2014 Huang (10.1016/j.optlaseng.2020.106192_bib0022) 2006; 45 Li (10.1016/j.optlaseng.2020.106192_bib0106) 1990; 29 Zuo (10.1016/j.optlaseng.2020.106192_bib0036) 2012; 20 Van der Jeught (10.1016/j.optlaseng.2020.106192_bib0076) 2015; 54 Guo (10.1016/j.optlaseng.2020.106192_bib0095) 2005; 44 Pawley (10.1016/j.optlaseng.2020.106192_bib0012) 2010 Wang (10.1016/j.optlaseng.2020.106192_bib0078) 2006; 261 Li (10.1016/j.optlaseng.2020.106192_bib0057) 2015; 23 Zuo (10.1016/j.optlaseng.2020.106192_bib0127) 2013; 51 Mittal (10.1016/j.optlaseng.2020.106192_bib0121) 2015; 47 Zhang (10.1016/j.optlaseng.2020.106192_bib0030) 2010; 35 Wang (10.1016/j.optlaseng.2020.106192_bib0082) 2017; 25 10.1016/j.optlaseng.2020.106192_bib0140 10.1016/j.optlaseng.2020.106192_bib0142 10.1016/j.optlaseng.2020.106192_bib0141 Franca (10.1016/j.optlaseng.2020.106192_bib0014) 2005; 1 Kowarschik (10.1016/j.optlaseng.2020.106192_bib0023) 2000; 39 Wang (10.1016/j.optlaseng.2020.106192_bib0114) 2010; 48 Gardner (10.1016/j.optlaseng.2020.106192_bib0047) 2001 Chen (10.1016/j.optlaseng.2020.106192_bib0001) 2000; 39 Long (10.1016/j.optlaseng.2020.106192_bib0040) 2016; 63 Zhang (10.1016/j.optlaseng.2020.106192_bib0032) 2017; 25 Proll (10.1016/j.optlaseng.2020.106192_bib0071) 2000; 39 Huang (10.1016/j.optlaseng.2020.106192_bib0115) 2010; 49 Huiyang (10.1016/j.optlaseng.2020.106192_bib0088) 2013 Liu (10.1016/j.optlaseng.2020.106192_bib0113) 2003; 216 Wang (10.1016/j.optlaseng.2020.106192_bib0020) 2009; 48 Li (10.1016/j.optlaseng.2020.106192_bib0085) 2013; 51 Chen (10.1016/j.optlaseng.2020.106192_bib0092) 2014; 57 Derpanis (10.1016/j.optlaseng.2020.106192_bib0006) 2004 Creath (10.1016/j.optlaseng.2020.106192_bib0008) 1988; 26 Hu (10.1016/j.optlaseng.2020.106192_bib0025) 2017; 28 Sun (10.1016/j.optlaseng.2020.106192_bib0026) 2015; 66 Hu (10.1016/j.optlaseng.2020.106192_bib0073) 2018; 57 Hu (10.1016/j.optlaseng.2020.106192_bib0074) 2019; 30 Zhang (10.1016/j.optlaseng.2020.106192_bib0091) 2019; 7 Quan (10.1016/j.optlaseng.2020.106192_bib0077) 2002; 34 Feng (10.1016/j.optlaseng.2020.106192_bib0123) 2014; 329 Gorthi (10.1016/j.optlaseng.2020.106192_bib0004) 2010; 48 Zhang (10.1016/j.optlaseng.2020.106192_bib0116) 2011; 36 Tanaka (10.1016/j.optlaseng.2020.106192_bib0118) 2014 Feng (10.1016/j.optlaseng.2020.106192_bib0128) 2014; 59 Zuo (10.1016/j.optlaseng.2020.106192_bib0035) 2018; 102 Zhang (10.1016/j.optlaseng.2020.106192_bib0038) 2010; 48 Yao (10.1016/j.optlaseng.2020.106192_bib0084) 2016; 13 Srinivasan (10.1016/j.optlaseng.2020.106192_bib0100) 1984; 23 Steinchen (10.1016/j.optlaseng.2020.106192_bib0009) 2003; 93 Zuo (10.1016/j.optlaseng.2020.106192_bib0109) 2016; 85 Lazaros (10.1016/j.optlaseng.2020.106192_bib0005) 2008; 2 Feng (10.1016/j.optlaseng.2020.106192_bib0129) 2013; 52 Zhang (10.1016/j.optlaseng.2020.106192_bib0124) 2007; 46 Jones (10.1016/j.optlaseng.2020.106192_bib0010) 1989; 6 |
References_xml | – volume: 11 year: 2013 ident: bib0061 article-title: Real-time three-dimensional infrared imaging using fringe projection profilometry publication-title: Chin Opt Lett – volume: 63 start-page: 1695 year: 2016 end-page: 1705 ident: bib0040 article-title: Recovery of absolute phases for the fringe patterns of three selected wavelengths with improved anti-error capability publication-title: J Mod Opt – volume: 36 start-page: 3372 year: 1997 ident: bib0049 article-title: Three-dimensional topometry with stereo microscopes publication-title: Opt Eng – volume: 122 start-page: 1 year: 2019 end-page: 7 ident: bib0139 article-title: Microscopic 3D measurement of shiny surfaces based on a multi-frequency phase-shifting scheme publication-title: Opt Lasers Eng – volume: 46 year: 2007 ident: bib0124 article-title: Phase error compensation for a 3-D shape measurement system based on the phase-shifting method publication-title: Opt Eng – start-page: 92972 year: 2014 ident: bib0075 – volume: 2 start-page: 435 year: 2008 end-page: 462 ident: bib0005 article-title: Review of stereo vision algorithms: from software to hardware publication-title: Int J Optomechatronics – volume: 102 start-page: 70 year: 2018 end-page: 91 ident: bib0035 article-title: Micro Fourier Transform Profilometry (μ FTP): 3D shape measurement at 10,000 frames per second publication-title: Opt Lasers Eng – volume: 24 start-page: 20253 year: 2016 ident: bib0063 article-title: Real-time 3-D shape measurement with composite phase-shifting fringes and multi-view system publication-title: Opt Express – start-page: 87594 year: 2013 ident: bib0079 – start-page: 241 year: 1989 ident: bib0130 article-title: An improved Fourier transform profilometry – reference: DLP vs LCD vs LCoS Projector: Which should you buy? n.d. – volume: 14 start-page: 9120 year: 2006 end-page: 9129 ident: bib0122 article-title: GPU-assisted high-resolution, real-time 3-D shape measurement publication-title: Opt Express – reference: DLP Overview | DLP Products | TI.com n.d. – reference: Morrison G. DLP vs LCD vs LCoS: projector tech pros and cons. CNET n.d. – volume: 2 start-page: 323 year: 1996 ident: bib0011 article-title: Holographic interferometry: principles and methods publication-title: Simul Exp Laser Metrol Proc Int Symp Laser Appl Precis Meas Held Balatonfüred Hungary – volume: 30 year: 2019 ident: bib0074 article-title: Dynamic 3D measurement of thermal deformation based on geometric-constrained stereo-matching with a stereo microscopic system publication-title: Meas Sci Technol – reference: Haskamp K, Kästner M, Reithmeier E. Accurate calibration of a fringe projection system by considering telecentricity. In: Lehmann PH, Osten W, Gastinger K, editors., 2011, p. 80821B. doi:10.1117/12.888037. – start-page: 498 year: 2013 end-page: 503 ident: bib0088 article-title: Calibration of camera with small FOV and DOF telecentric lens publication-title: IEEE – start-page: 73 year: 2001 end-page: 92 ident: bib0003 article-title: Roving STARs: an integrated approach to on-line testing, diagnosis, and fault tolerance for FPGAs in adaptive computing systems publication-title: Proceeding third NASADoD workshop evolvable hardware EH-2001 – year: 2004 ident: bib0046 article-title: Unbiased stereology : three-dimensional measurement in microscopy publication-title: Garland Sci – volume: 54 start-page: 4953 year: 2015 ident: bib0076 article-title: Real-time microscopic phase-shifting profilometry publication-title: Appl Opt – volume: 51 start-page: 953 year: 2013 end-page: 960 ident: bib0127 article-title: High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection publication-title: Opt Lasers Eng – year: 2013 ident: bib0143 – volume: 39 year: 2000 ident: bib0024 article-title: Theory and arrangements of self-calibrating whole-body 3-D-measurement systems using fringe projection technique publication-title: Opt Eng – volume: 39 start-page: 6430 year: 2000 ident: bib0071 article-title: Application of a liquid-crystal spatial light modulator for brightness adaptation in microscopic topometry publication-title: Appl Opt – volume: 32 start-page: 2438 year: 2007 ident: bib0117 article-title: Three-dimensional shape measurement with an arbitrarily arranged fringe projection profilometry system publication-title: Opt Lett – volume: 40 start-page: 1653 year: 2001 ident: bib0067 article-title: One-grating projection for absolute three-dimensional profiling publication-title: Opt Eng – volume: 121 start-page: 1290 year: 2010 end-page: 1294 ident: bib0137 article-title: Further study of the phase-recovering algorithm for saturated fringe patterns with a larger saturation coefficient in the projection grating phase-shifting profilometry publication-title: Opt - Int J Light Electron Opt – volume: 45 start-page: 1688 year: 2006 end-page: 1703 ident: bib0070 article-title: Polarimetric characterization of liquid-crystal-on-silicon panels publication-title: Appl Opt – start-page: 70660 year: 2008 ident: bib0132 article-title: 3-D shape measurement by use of a modified Fourier transform method – volume: 57 start-page: A181 year: 2018 ident: bib0039 article-title: Error of image saturation in the structured-light method publication-title: Appl Opt – volume: 48 start-page: 191 year: 2010 end-page: 204 ident: bib0099 article-title: Dynamic 3-D shape measurement method: a review publication-title: Opt Lasers Eng – volume: 66 start-page: 158 year: 2015 end-page: 164 ident: bib0026 article-title: Improved intensity-optimized dithering technique for 3D shape measurement publication-title: Opt Lasers Eng – reference: CAI Z, LIU X, PENG X, YIN Y, LI A, WU J, et al. Structured light field 3D imaging n.d.:11. – year: 2014 ident: bib0062 article-title: Real-time 3D shape measurement system with full temporal resolution and spatial resolution publication-title: Three-Dimens Image Process Meas 3DIPM Appl – volume: 81 start-page: 103 year: 2015 end-page: 107 ident: bib0110 article-title: Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry publication-title: Photogramm Eng Remote Sens – volume: 85 start-page: 53 year: 2016 end-page: 64 ident: bib0043 article-title: Lens distortion elimination for improving measurement accuracy of fringe projection profilometry publication-title: Opt Lasers Eng – volume: 47 start-page: 57 year: 2009 end-page: 61 ident: bib0131 article-title: Surface profile measurement of moving objects by using an improved π phase-shifting Fourier transform profilometry publication-title: Opt Lasers Eng – volume: 4985 start-page: 14 year: 2003 end-page: 25 ident: bib0069 article-title: Emerging digital micromirror device (DMD) applications. MOEMS disp. imaging syst. publication-title: Int Soc Opt Photonics – reference: Su X, Chen W. Fourier transform profilometry: a review. Opt Lasers Eng2001:22. – volume: 23 start-page: 6846 year: 2015 ident: bib0080 article-title: Fringe projection 3D microscopy with the general imaging model publication-title: Opt Express – volume: 35 start-page: 934 year: 2010 ident: bib0030 article-title: Flexible 3D shape measurement using projector defocusing: extended measurement range publication-title: Opt Lett – volume: 29 start-page: 64 year: 1990 end-page: 66 ident: bib0097 article-title: Two-dimensional Fourier transform profilometry for the automatic measurement of three-dimensional object shapes publication-title: Opt Eng – reference: Bruning JH, Herriott DR, Gallagher JE, Rosenfeld DP, White AD, Brangaccio DJ. Digital wavefront measuring interferometer for testing optical surfaces and lenses n.d.:11. – volume: 261 start-page: 164 year: 2006 end-page: 171 ident: bib0078 article-title: 3D measurement of crater wear by phase shifting method publication-title: Wear – volume: 36 start-page: 1257 year: 2011 ident: bib0116 article-title: Simple, flexible calibration of phase calculation-based three-dimensional imaging system publication-title: Opt Lett – volume: 26 start-page: 349 year: 1988 end-page: 393 ident: bib0008 article-title: Phase-measurement interferometry techniques publication-title: Prog Opt – volume: 3 start-page: 323 year: 1987 end-page: 344 ident: bib0111 article-title: A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses publication-title: IEEE J Robot Autom – volume: 44 year: 2005 ident: bib0095 article-title: Least-squares calibration method for fringe projection profilometry publication-title: Opt Eng – volume: 46 year: 2007 ident: bib0103 article-title: High-speed three-dimensional shape measurement system using a modified two-plus-one phase-shifting algorithm publication-title: Opt Eng – volume: 25 start-page: 19408 year: 2017 ident: bib0082 article-title: Improved performance of multi-view fringe projection 3D microscopy publication-title: Opt Express – volume: 54 start-page: 170 year: 2014 end-page: 174 ident: bib0135 article-title: Rapid in-situ 3D measurement of shiny object based on fast and high dynamic range digital fringe projector publication-title: Opt Lasers Eng – volume: 13 start-page: 147 year: 2005 end-page: 150 ident: bib0072 article-title: Full-field micro surface profilometry using digital fringe projection with spatial encoding principle publication-title: J Phys Conf Ser – reference: (accessed August 8, 2019). – volume: 17 start-page: 21867 year: 2009 ident: bib0107 article-title: The general theory of phase shifting algorithms publication-title: Opt Express – volume: 54 start-page: 6865 year: 2015 ident: bib0120 article-title: Graphics processing unit–assisted real-time three-dimensional measurement using speckle-embedded fringe publication-title: Appl Opt – year: 2001 ident: bib0047 article-title: Microsensors, mems and smart devices – volume: 38 start-page: 1389 year: 2013 end-page: 1391 ident: bib0093 article-title: Multiview phase shifting: a full-resolution and high-speed 3D measurement framework for arbitrary shape dynamic objects publication-title: Opt Lett – volume: 19 start-page: 1489 year: 1989 end-page: 1510 ident: bib0094 article-title: Structure from stereo-a review publication-title: IEEE Trans Syst Man Cybern – volume: 54 start-page: 10055 year: 2015 ident: bib0042 article-title: Distortion correction for microscopic fringe projection system with Scheimpflug telecentric lens publication-title: Appl Opt – volume: 28 year: 2017 ident: bib0058 article-title: Absolute three-dimensional micro surface profile measurement based on a greenough-type stereomicroscope publication-title: Meas Sci Technol – volume: 87 start-page: 18 year: 2016 end-page: 31 ident: bib0034 article-title: Real-time structured light profilometry: a review publication-title: Opt Lasers Eng – volume: 38 year: 1999 ident: bib0125 article-title: Phase unwrapping by lookup table method: application to phase map with singular points publication-title: Opt Eng – reference: (accessed January 31, 2020). – volume: 57 start-page: 772 year: 2018 ident: bib0073 article-title: Dynamic microscopic 3D shape measurement based on marker-embedded Fourier transform profilometry publication-title: Appl Opt – volume: 51 start-page: 861 year: 2012 end-page: 872 ident: bib0029 article-title: Comparison of the squared binary, sinusoidal pulse width modulation, and optimal pulse width modulation methods for three-dimensional shape measurement with projector defocusing publication-title: Appl Opt – volume: 189 start-page: 21 year: 2001 end-page: 29 ident: bib0050 article-title: Shape measurement of small objects using LCD fringe projection with phase shifting publication-title: Opt Commun – volume: 26 start-page: 2810 year: 1987 end-page: 2816 ident: bib0066 article-title: Step height measurement using two-wavelength phase-shifting interferometry publication-title: Appl Opt – volume: 48 start-page: 1052 year: 2009 end-page: 1061 ident: bib0020 article-title: Three-dimensional shape measurement with a fast and accurate approach publication-title: Appl Opt – start-page: 1173 year: 2010 end-page: 1180 ident: bib0013 article-title: 3D shape scanning with a time-of-flight camera publication-title: Comput Vis Pattern Recognit CVPR 2010 IEEE Conf On, IEEE – volume: 22 start-page: 31826 year: 2014 ident: bib0059 article-title: Telecentric 3D profilometry based on phase-shifting fringe projection publication-title: Opt Express – volume: 46 year: 2007 ident: bib0105 article-title: Two-step triangular-pattern phase-shifting method for three-dimensional object-shape measurement publication-title: Opt Eng – year: 2004 ident: bib0006 article-title: The harris corner detector publication-title: York Univ – volume: 20 start-page: 19493 year: 2012 ident: bib0036 article-title: High-speed three-dimensional profilometry for multiple objects with complex shapes publication-title: Opt Express – volume: 124 start-page: 5052 year: 2013 end-page: 5056 ident: bib0052 article-title: Fringe projection based quantitative 3D microscopy publication-title: Opt - Int J Light Electron Opt – volume: 54 start-page: 10541 year: 2015 end-page: 10551 ident: bib0037 article-title: Theoretical considerations on aperiodic sinusoidal fringes in comparison to phase-shifted sinusoidal fringes for high-speed three-dimensional shape measurement publication-title: Appl Opt – volume: 26 start-page: 2504 year: 1987 end-page: 2506 ident: bib0102 article-title: Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm publication-title: Appl Opt – year: 2015 ident: bib0119 article-title: Efficient FFT mapping on GPU for radar processing application: modeling and implementation publication-title: ArXiv150508067 Cs – volume: 33 start-page: 12 year: 1994 ident: bib0048 article-title: Microshape and rough-surface analysis by fringe projection publication-title: Appl Opt – volume: 48 start-page: 1132 year: 2010 end-page: 1139 ident: bib0060 article-title: Accurate 3D measurement system and calibration for speckle projection method publication-title: Opt Lasers Eng – volume: 96 start-page: 117 year: 2017 end-page: 123 ident: bib0064 article-title: Microscopic structured light 3D profilometry: binary defocusing technique vs. sinusoidal fringe projection publication-title: Opt Lasers Eng – reference: Raab S. Three dimensional coordinate measuring apparatus. US5402582A, 1995. – volume: 45 year: 2006 ident: bib0021 article-title: real-time three-dimensional shape measurement publication-title: Opt Eng – volume: 25 start-page: 20381 year: 2017 ident: bib0032 article-title: Robust and efficient multi-frequency temporal phase unwrapping: optimal fringe frequency and pattern sequence selection publication-title: Opt Express – reference: Tsai RY.An efficient and accurate camera calibration technique for 3D machine vision. Proc IEEE Conf on Comput Vis Pattern Recognit1986:364–74. – volume: 216 start-page: 65 year: 2003 end-page: 80 ident: bib0113 article-title: Calibration-based phase-shifting projected fringe profilometry for accurate absolute 3D surface profile measurement publication-title: Opt Commun – volume: 7 start-page: 54682 year: 2019 end-page: 54692 ident: bib0091 article-title: High-precision measurement of binocular telecentric vision system with novel calibration and matching methods publication-title: IEEE Access – volume: 28 year: 2017 ident: bib0025 article-title: Real-time microscopic 3D shape measurement based on optimized pulse-width-modulation binary fringe projection publication-title: Meas Sci Technol – volume: 47 start-page: 1 year: 2015 end-page: 35 ident: bib0121 article-title: A survey of CPU-GPU heterogeneous computing techniques publication-title: ACM Comput Surv – volume: 29 start-page: 1439 year: 1990 end-page: 1445 ident: bib0106 article-title: Improved Fourier transform profilometry for the automatic measurement of three-dimensional object shapes publication-title: Opt Eng – volume: 109 start-page: 23 year: 2018 end-page: 59 ident: bib0019 article-title: Phase shifting algorithms for fringe projection profilometry: a review publication-title: Opt Lasers Eng – reference: Electropages. DLP vs. LCD vs. LED vs. LCoS vs. laser: shedding light on projector technology n.d. – reference: Polyga - 3D Scanning Technologies for Professionals. Polyga n.d. – volume: 39 start-page: 10 year: 2000 end-page: 23 ident: bib0001 article-title: Overview of 3-D shape measurement using optical methods publication-title: Opt Eng – volume: 47 year: 2008 ident: bib0015 article-title: General model for moiré contouring, part 1: theory publication-title: Opt Eng – volume: 57 start-page: 2352 year: 2018 ident: bib0033 article-title: Optimal wavelength selection strategy in temporal phase unwrapping with projection distance minimization publication-title: Appl Opt – volume: 22 start-page: 1330 year: 2000 end-page: 1334 ident: bib0055 article-title: A flexible new technique for camera calibration publication-title: IEEE Trans Pattern Anal Mach Intell – year: 2004 ident: bib0083 article-title: Multiple view geometry in computer vision – volume: 281 start-page: 3087 year: 2008 end-page: 3090 ident: bib0138 article-title: Phase deviation analysis and phase retrieval for partial intensity saturation in phase-shifting projected fringe profilometry publication-title: Opt Commun – volume: 39 year: 2000 ident: bib0023 article-title: Adaptive optical 3-D-measurement with structured light publication-title: Opt Eng – volume: 23 start-page: 3105 year: 1984 end-page: 3108 ident: bib0100 article-title: Automated phase-measuring profilometry of 3-D diffuse objects publication-title: Appl Opt – volume: 85 start-page: 84 year: 2016 end-page: 103 ident: bib0109 article-title: Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review publication-title: Opt Lasers Eng – volume: 24 start-page: 1222 year: 2016 end-page: 1237 ident: bib0090 article-title: Flexible calibration method for telecentric fringe projection profilometry systems publication-title: Opt Express – volume: 45 year: 2006 ident: bib0022 article-title: Novel method for structured light system calibration publication-title: Opt Eng – volume: 51 year: 2012 ident: bib0041 article-title: Real-time geometric lens distortion correction using a graphics processing unit publication-title: Opt Eng – volume: 41 start-page: 4503 year: 2002 end-page: 4509 ident: bib0101 article-title: Double three-step phase-shifting algorithm publication-title: Appl Opt – volume: 38 start-page: 6565 year: 1999 end-page: 6573 ident: bib0031 article-title: Three-dimensional vision based on a combination of gray-code and phase-shift light projection: analysis and compensation of the systematic errors publication-title: Appl Opt – volume: 25 start-page: 31492 year: 2017 end-page: 31508 ident: bib0081 article-title: Calibration method for projector-camera-based telecentric fringe projection profilometry system publication-title: Opt Express – volume: 13 start-page: 3110 year: 2005 end-page: 3116 ident: bib0065 article-title: High-speed optical measurement for the drumhead vibration publication-title: Opt Express – volume: 59 start-page: 56 year: 2014 end-page: 71 ident: bib0128 article-title: General solution for high dynamic range three-dimensional shape measurement using the fringe projection technique publication-title: Opt Lasers Eng – volume: 13 start-page: 82 year: 2016 ident: bib0084 article-title: A flexible calibration approach for cameras with double-sided telecentric lenses publication-title: Int J Adv Robot Syst – volume: 41 start-page: 5896 year: 2002 ident: bib0051 article-title: Microscopic phase-shifting profilometry based on digital micromirror device technology publication-title: Appl Opt – volume: 96 start-page: 1 year: 2014 end-page: 7 ident: bib0098 article-title: Comparative performance analysis of hamming, hanning and blackman window publication-title: Int J Comput Appl – volume: 52 year: 2013 ident: bib0129 article-title: Automatic identification and removal of outliers for high-speed fringe projection profilometry publication-title: Opt Eng – volume: 43 start-page: 2695 year: 2004 end-page: 2702 ident: bib0018 article-title: Windowed Fourier transform for fringe pattern analysis publication-title: Appl Opt – volume: 48 start-page: 149 year: 2010 end-page: 158 ident: bib0038 article-title: Recent progresses on real-time 3D shape measurement using digital fringe projection techniques publication-title: Opt Lasers Eng – volume: 57 start-page: 82 year: 2014 end-page: 92 ident: bib0092 article-title: Telecentric stereo micro-vision system: calibration method and experiments publication-title: Opt Lasers Eng – volume: 48 start-page: 218 year: 2010 end-page: 225 ident: bib0114 article-title: Some practical considerations in fringe projection profilometry publication-title: Opt Lasers Eng – year: 2010 ident: bib0012 article-title: Handbook of biological confocal microscopy – volume: 23 start-page: 25795 year: 2015 ident: bib0057 article-title: Flexible calibration method for microscopic structured light system using telecentric lens publication-title: Opt Express – volume: 48 year: 2009 ident: bib0134 article-title: High dynamic range scanning technique publication-title: Opt Eng – volume: 121 start-page: 23 year: 2010 end-page: 28 ident: bib0136 article-title: Study on a novel phase-recovering algorithm for partial intensity saturation in digital projection grating phase-shifting profilometry publication-title: Opt - Int J Light Electron Opt – volume: 51 start-page: 4477 year: 2012 ident: bib0028 article-title: Optimized pulse width modulation pattern strategy for three-dimensional profilometry with projector defocusing publication-title: Appl Opt – volume: 10827 year: 2018 ident: bib0089 article-title: Calibration of telecentric cameras with distortion center estimation. Sixth int. conf. opt. photonic eng. IcOPEN 2018 publication-title: Int Soc Opt Photonics – reference: Precise Industrial 3D Metrology. GOM n.d. – volume: 48 start-page: 133 year: 2010 end-page: 140 ident: bib0004 article-title: Fringe projection techniques: whither we are? publication-title: Opt Lasers Eng – volume: 6 year: 1989 ident: bib0010 publication-title: Others. Holographic and speckle interferometry – volume: 45 start-page: 1021 year: 1984 end-page: 1023 ident: bib0068 article-title: A new, highly multiplexable liquid crystal display publication-title: Appl Phys Lett – volume: 35 start-page: 3682 year: 2010 end-page: 3684 ident: bib0027 article-title: Pulse-width modulation in defocused three-dimensional fringe projection publication-title: Opt Lett – volume: 2 year: 2004 ident: bib0007 article-title: PCA-SIFT: a more distinctive representation for local image descriptors publication-title: Comput Vis Pattern Recognit 2004 CVPR 2004 Proc 2004 IEEE Comput Soc Conf On – volume: 1 year: 2005 ident: bib0014 article-title: A 3D scanning system based on laser triangulation and variable field of view publication-title: Image Process 2005 ICIP 2005 IEEE Int Conf On – volume: 51 start-page: 538 year: 2013 end-page: 541 ident: bib0085 article-title: An accurate calibration method for a camera with telecentric lenses publication-title: Opt Lasers Eng – start-page: 3129 year: 2014 end-page: 3134 ident: bib0118 article-title: A solution to pose ambiguity of visual markers using Moiré patterns publication-title: IEEE – volume: 113 start-page: 14 year: 2019 end-page: 22 ident: bib0056 article-title: A new microscopic telecentric stereo vision system - calibration, rectification, and three-dimensional reconstruction publication-title: Opt Lasers Eng – volume: 329 start-page: 44 year: 2014 end-page: 56 ident: bib0123 article-title: High-speed real-time 3-D coordinates measurement based on fringe projection profilometry considering camera lens distortion publication-title: Opt Commun – volume: 42 start-page: 1773 year: 2003 ident: bib0053 article-title: Microscopic three-dimensional topometry with ferroelectric liquid-crystal-on-silicon displays publication-title: Appl Opt – volume: 44 year: 2005 ident: bib0104 article-title: Trapezoidal phase-shifting method for three-dimensional shape measurement publication-title: Opt Eng – volume: 49 start-page: 1539 year: 2010 ident: bib0115 article-title: Least-squares calibration method for fringe projection profilometry considering camera lens distortion publication-title: Appl Opt – volume: 131 start-page: 724 year: 2017 end-page: 732 ident: bib0086 article-title: An accurate calibration method for non-overlapping cameras with double-sided telecentric lenses publication-title: Opt - Int J Light Electron Opt – volume: 46 start-page: 36 year: 2007 end-page: 43 ident: bib0126 article-title: Generic nonsinusoidal phase error correction for three-dimensional shape measurement using a digital video projector publication-title: Appl Opt – reference: (accessed November 24, 2019). – volume: 34 start-page: 547 year: 2002 end-page: 552 ident: bib0077 article-title: Microscopic surface contouring by fringe projection method publication-title: Opt Laser Technol – volume: 8 start-page: 822 year: 1991 end-page: 827 ident: bib0108 article-title: Generalized phase-shifting interferometry publication-title: JOSA A – volume: 93 year: 2003 ident: bib0009 publication-title: Digital shearography: theory and application of digital speckle pattern shearing interferometry – volume: 72 start-page: 156 year: 1982 ident: bib0016 article-title: Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry publication-title: J Opt Soc Am – start-page: 87594 year: 2013 ident: 10.1016/j.optlaseng.2020.106192_bib0079 – volume: 33 start-page: 12 year: 1994 ident: 10.1016/j.optlaseng.2020.106192_bib0048 article-title: Microshape and rough-surface analysis by fringe projection publication-title: Appl Opt doi: 10.1364/AO.33.007477 – volume: 124 start-page: 5052 year: 2013 ident: 10.1016/j.optlaseng.2020.106192_bib0052 article-title: Fringe projection based quantitative 3D microscopy publication-title: Opt - Int J Light Electron Opt doi: 10.1016/j.ijleo.2013.03.070 – year: 2013 ident: 10.1016/j.optlaseng.2020.106192_bib0143 – volume: 35 start-page: 934 year: 2010 ident: 10.1016/j.optlaseng.2020.106192_bib0030 article-title: Flexible 3D shape measurement using projector defocusing: extended measurement range publication-title: Opt Lett doi: 10.1364/OL.35.000934 – ident: 10.1016/j.optlaseng.2020.106192_bib0002 – volume: 41 start-page: 4503 year: 2002 ident: 10.1016/j.optlaseng.2020.106192_bib0101 article-title: Double three-step phase-shifting algorithm publication-title: Appl Opt doi: 10.1364/AO.41.004503 – ident: 10.1016/j.optlaseng.2020.106192_bib0045 – volume: 25 start-page: 19408 year: 2017 ident: 10.1016/j.optlaseng.2020.106192_bib0082 article-title: Improved performance of multi-view fringe projection 3D microscopy publication-title: Opt Express doi: 10.1364/OE.25.019408 – volume: 47 year: 2008 ident: 10.1016/j.optlaseng.2020.106192_bib0015 article-title: General model for moiré contouring, part 1: theory publication-title: Opt Eng – volume: 3 start-page: 323 year: 1987 ident: 10.1016/j.optlaseng.2020.106192_bib0111 article-title: A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses publication-title: IEEE J Robot Autom doi: 10.1109/JRA.1987.1087109 – volume: 329 start-page: 44 year: 2014 ident: 10.1016/j.optlaseng.2020.106192_bib0123 article-title: High-speed real-time 3-D coordinates measurement based on fringe projection profilometry considering camera lens distortion publication-title: Opt Commun doi: 10.1016/j.optcom.2014.04.067 – ident: 10.1016/j.optlaseng.2020.106192_bib0054 – volume: 57 start-page: A181 year: 2018 ident: 10.1016/j.optlaseng.2020.106192_bib0039 article-title: Error of image saturation in the structured-light method publication-title: Appl Opt doi: 10.1364/AO.57.00A181 – ident: 10.1016/j.optlaseng.2020.106192_bib0140 – volume: 45 year: 2006 ident: 10.1016/j.optlaseng.2020.106192_bib0021 article-title: real-time three-dimensional shape measurement publication-title: Opt Eng – volume: 87 start-page: 18 year: 2016 ident: 10.1016/j.optlaseng.2020.106192_bib0034 article-title: Real-time structured light profilometry: a review publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2016.01.011 – volume: 7 start-page: 54682 year: 2019 ident: 10.1016/j.optlaseng.2020.106192_bib0091 article-title: High-precision measurement of binocular telecentric vision system with novel calibration and matching methods publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2913181 – volume: 216 start-page: 65 year: 2003 ident: 10.1016/j.optlaseng.2020.106192_bib0113 article-title: Calibration-based phase-shifting projected fringe profilometry for accurate absolute 3D surface profile measurement publication-title: Opt Commun doi: 10.1016/S0030-4018(02)02290-3 – volume: 51 start-page: 4477 year: 2012 ident: 10.1016/j.optlaseng.2020.106192_bib0028 article-title: Optimized pulse width modulation pattern strategy for three-dimensional profilometry with projector defocusing publication-title: Appl Opt doi: 10.1364/AO.51.004477 – volume: 43 start-page: 2695 year: 2004 ident: 10.1016/j.optlaseng.2020.106192_bib0018 article-title: Windowed Fourier transform for fringe pattern analysis publication-title: Appl Opt doi: 10.1364/AO.43.002695 – volume: 96 start-page: 1 year: 2014 ident: 10.1016/j.optlaseng.2020.106192_bib0098 article-title: Comparative performance analysis of hamming, hanning and blackman window publication-title: Int J Comput Appl – volume: 39 year: 2000 ident: 10.1016/j.optlaseng.2020.106192_bib0024 article-title: Theory and arrangements of self-calibrating whole-body 3-D-measurement systems using fringe projection technique publication-title: Opt Eng doi: 10.1117/1.602347 – volume: 36 start-page: 1257 year: 2011 ident: 10.1016/j.optlaseng.2020.106192_bib0116 article-title: Simple, flexible calibration of phase calculation-based three-dimensional imaging system publication-title: Opt Lett doi: 10.1364/OL.36.001257 – volume: 34 start-page: 547 year: 2002 ident: 10.1016/j.optlaseng.2020.106192_bib0077 article-title: Microscopic surface contouring by fringe projection method publication-title: Opt Laser Technol doi: 10.1016/S0030-3992(02)00070-1 – volume: 13 start-page: 82 year: 2016 ident: 10.1016/j.optlaseng.2020.106192_bib0084 article-title: A flexible calibration approach for cameras with double-sided telecentric lenses publication-title: Int J Adv Robot Syst doi: 10.5772/63825 – volume: 44 year: 2005 ident: 10.1016/j.optlaseng.2020.106192_bib0104 article-title: Trapezoidal phase-shifting method for three-dimensional shape measurement publication-title: Opt Eng doi: 10.1117/1.2147311 – volume: 20 start-page: 19493 year: 2012 ident: 10.1016/j.optlaseng.2020.106192_bib0036 article-title: High-speed three-dimensional profilometry for multiple objects with complex shapes publication-title: Opt Express doi: 10.1364/OE.20.019493 – volume: 26 start-page: 2810 year: 1987 ident: 10.1016/j.optlaseng.2020.106192_bib0066 article-title: Step height measurement using two-wavelength phase-shifting interferometry publication-title: Appl Opt doi: 10.1364/AO.26.002810 – volume: 6 year: 1989 ident: 10.1016/j.optlaseng.2020.106192_bib0010 – volume: 38 start-page: 6565 year: 1999 ident: 10.1016/j.optlaseng.2020.106192_bib0031 article-title: Three-dimensional vision based on a combination of gray-code and phase-shift light projection: analysis and compensation of the systematic errors publication-title: Appl Opt doi: 10.1364/AO.38.006565 – volume: 48 start-page: 1052 year: 2009 ident: 10.1016/j.optlaseng.2020.106192_bib0020 article-title: Three-dimensional shape measurement with a fast and accurate approach publication-title: Appl Opt doi: 10.1364/AO.48.001052 – ident: 10.1016/j.optlaseng.2020.106192_bib0142 – volume: 121 start-page: 23 year: 2010 ident: 10.1016/j.optlaseng.2020.106192_bib0136 article-title: Study on a novel phase-recovering algorithm for partial intensity saturation in digital projection grating phase-shifting profilometry publication-title: Opt - Int J Light Electron Opt doi: 10.1016/j.ijleo.2008.05.010 – volume: 22 start-page: 1330 year: 2000 ident: 10.1016/j.optlaseng.2020.106192_bib0055 article-title: A flexible new technique for camera calibration publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.888718 – volume: 39 year: 2000 ident: 10.1016/j.optlaseng.2020.106192_bib0023 article-title: Adaptive optical 3-D-measurement with structured light publication-title: Opt Eng – year: 2014 ident: 10.1016/j.optlaseng.2020.106192_bib0062 article-title: Real-time 3D shape measurement system with full temporal resolution and spatial resolution publication-title: Three-Dimens Image Process Meas 3DIPM Appl – volume: 54 start-page: 4953 year: 2015 ident: 10.1016/j.optlaseng.2020.106192_bib0076 article-title: Real-time microscopic phase-shifting profilometry publication-title: Appl Opt doi: 10.1364/AO.54.004953 – start-page: 70660 year: 2008 ident: 10.1016/j.optlaseng.2020.106192_bib0132 – volume: 25 start-page: 31492 year: 2017 ident: 10.1016/j.optlaseng.2020.106192_bib0081 article-title: Calibration method for projector-camera-based telecentric fringe projection profilometry system publication-title: Opt Express doi: 10.1364/OE.25.031492 – volume: 23 start-page: 6846 year: 2015 ident: 10.1016/j.optlaseng.2020.106192_bib0080 article-title: Fringe projection 3D microscopy with the general imaging model publication-title: Opt Express doi: 10.1364/OE.23.006846 – volume: 29 start-page: 64 year: 1990 ident: 10.1016/j.optlaseng.2020.106192_bib0097 article-title: Two-dimensional Fourier transform profilometry for the automatic measurement of three-dimensional object shapes publication-title: Opt Eng – volume: 47 start-page: 57 year: 2009 ident: 10.1016/j.optlaseng.2020.106192_bib0131 article-title: Surface profile measurement of moving objects by using an improved π phase-shifting Fourier transform profilometry publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2008.08.003 – volume: 57 start-page: 772 year: 2018 ident: 10.1016/j.optlaseng.2020.106192_bib0073 article-title: Dynamic microscopic 3D shape measurement based on marker-embedded Fourier transform profilometry publication-title: Appl Opt doi: 10.1364/AO.57.000772 – volume: 45 start-page: 1021 year: 1984 ident: 10.1016/j.optlaseng.2020.106192_bib0068 article-title: A new, highly multiplexable liquid crystal display publication-title: Appl Phys Lett doi: 10.1063/1.95048 – volume: 10827 year: 2018 ident: 10.1016/j.optlaseng.2020.106192_bib0089 article-title: Calibration of telecentric cameras with distortion center estimation. Sixth int. conf. opt. photonic eng. IcOPEN 2018 publication-title: Int Soc Opt Photonics – volume: 38 start-page: 1389 year: 2013 ident: 10.1016/j.optlaseng.2020.106192_bib0093 article-title: Multiview phase shifting: a full-resolution and high-speed 3D measurement framework for arbitrary shape dynamic objects publication-title: Opt Lett doi: 10.1364/OL.38.001389 – volume: 39 start-page: 10 year: 2000 ident: 10.1016/j.optlaseng.2020.106192_bib0001 article-title: Overview of 3-D shape measurement using optical methods publication-title: Opt Eng doi: 10.1117/1.602438 – start-page: 73 year: 2001 ident: 10.1016/j.optlaseng.2020.106192_bib0003 article-title: Roving STARs: an integrated approach to on-line testing, diagnosis, and fault tolerance for FPGAs in adaptive computing systems – volume: 28 year: 2017 ident: 10.1016/j.optlaseng.2020.106192_bib0058 article-title: Absolute three-dimensional micro surface profile measurement based on a greenough-type stereomicroscope publication-title: Meas Sci Technol doi: 10.1088/1361-6501/aa5a2d – volume: 36 start-page: 3372 year: 1997 ident: 10.1016/j.optlaseng.2020.106192_bib0049 article-title: Three-dimensional topometry with stereo microscopes publication-title: Opt Eng doi: 10.1117/1.601576 – start-page: 498 year: 2013 ident: 10.1016/j.optlaseng.2020.106192_bib0088 article-title: Calibration of camera with small FOV and DOF telecentric lens publication-title: IEEE – volume: 85 start-page: 53 year: 2016 ident: 10.1016/j.optlaseng.2020.106192_bib0043 article-title: Lens distortion elimination for improving measurement accuracy of fringe projection profilometry publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2016.04.009 – year: 2004 ident: 10.1016/j.optlaseng.2020.106192_bib0046 article-title: Unbiased stereology : three-dimensional measurement in microscopy publication-title: Garland Sci – volume: 26 start-page: 2504 year: 1987 ident: 10.1016/j.optlaseng.2020.106192_bib0102 article-title: Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm publication-title: Appl Opt doi: 10.1364/AO.26.002504 – year: 2001 ident: 10.1016/j.optlaseng.2020.106192_bib0047 – volume: 23 start-page: 25795 year: 2015 ident: 10.1016/j.optlaseng.2020.106192_bib0057 article-title: Flexible calibration method for microscopic structured light system using telecentric lens publication-title: Opt Express doi: 10.1364/OE.23.025795 – volume: 48 start-page: 1132 year: 2010 ident: 10.1016/j.optlaseng.2020.106192_bib0060 article-title: Accurate 3D measurement system and calibration for speckle projection method publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2009.12.016 – volume: 48 start-page: 218 year: 2010 ident: 10.1016/j.optlaseng.2020.106192_bib0114 article-title: Some practical considerations in fringe projection profilometry publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2009.06.005 – volume: 46 year: 2007 ident: 10.1016/j.optlaseng.2020.106192_bib0103 article-title: High-speed three-dimensional shape measurement system using a modified two-plus-one phase-shifting algorithm publication-title: Opt Eng doi: 10.1117/1.2802546 – volume: 109 start-page: 23 year: 2018 ident: 10.1016/j.optlaseng.2020.106192_bib0019 article-title: Phase shifting algorithms for fringe projection profilometry: a review publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2018.04.019 – volume: 23 start-page: 3105 year: 1984 ident: 10.1016/j.optlaseng.2020.106192_bib0100 article-title: Automated phase-measuring profilometry of 3-D diffuse objects publication-title: Appl Opt doi: 10.1364/AO.23.003105 – volume: 41 start-page: 5896 year: 2002 ident: 10.1016/j.optlaseng.2020.106192_bib0051 article-title: Microscopic phase-shifting profilometry based on digital micromirror device technology publication-title: Appl Opt doi: 10.1364/AO.41.005896 – volume: 54 start-page: 10055 year: 2015 ident: 10.1016/j.optlaseng.2020.106192_bib0042 article-title: Distortion correction for microscopic fringe projection system with Scheimpflug telecentric lens publication-title: Appl Opt doi: 10.1364/AO.54.010055 – volume: 19 start-page: 1489 year: 1989 ident: 10.1016/j.optlaseng.2020.106192_bib0094 article-title: Structure from stereo-a review publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/21.44067 – volume: 28 year: 2017 ident: 10.1016/j.optlaseng.2020.106192_bib0025 article-title: Real-time microscopic 3D shape measurement based on optimized pulse-width-modulation binary fringe projection publication-title: Meas Sci Technol doi: 10.1088/1361-6501/aa7277 – volume: 51 start-page: 861 year: 2012 ident: 10.1016/j.optlaseng.2020.106192_bib0029 article-title: Comparison of the squared binary, sinusoidal pulse width modulation, and optimal pulse width modulation methods for three-dimensional shape measurement with projector defocusing publication-title: Appl Opt doi: 10.1364/AO.51.000861 – volume: 13 start-page: 3110 year: 2005 ident: 10.1016/j.optlaseng.2020.106192_bib0065 article-title: High-speed optical measurement for the drumhead vibration publication-title: Opt Express doi: 10.1364/OPEX.13.003110 – volume: 57 start-page: 82 year: 2014 ident: 10.1016/j.optlaseng.2020.106192_bib0092 article-title: Telecentric stereo micro-vision system: calibration method and experiments publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2014.01.021 – volume: 85 start-page: 84 year: 2016 ident: 10.1016/j.optlaseng.2020.106192_bib0109 article-title: Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2016.04.022 – volume: 45 year: 2006 ident: 10.1016/j.optlaseng.2020.106192_bib0022 article-title: Novel method for structured light system calibration publication-title: Opt Eng doi: 10.1117/1.2336196 – volume: 66 start-page: 158 year: 2015 ident: 10.1016/j.optlaseng.2020.106192_bib0026 article-title: Improved intensity-optimized dithering technique for 3D shape measurement publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2014.09.008 – ident: 10.1016/j.optlaseng.2020.106192_bib0017 doi: 10.1016/S0143-8166(01)00023-9 – volume: 93 year: 2003 ident: 10.1016/j.optlaseng.2020.106192_bib0009 publication-title: Digital shearography: theory and application of digital speckle pattern shearing interferometry – volume: 54 start-page: 6865 year: 2015 ident: 10.1016/j.optlaseng.2020.106192_bib0120 article-title: Graphics processing unit–assisted real-time three-dimensional measurement using speckle-embedded fringe publication-title: Appl Opt doi: 10.1364/AO.54.006865 – volume: 57 start-page: 2352 year: 2018 ident: 10.1016/j.optlaseng.2020.106192_bib0033 article-title: Optimal wavelength selection strategy in temporal phase unwrapping with projection distance minimization publication-title: Appl Opt doi: 10.1364/AO.57.002352 – volume: 96 start-page: 117 year: 2017 ident: 10.1016/j.optlaseng.2020.106192_bib0064 article-title: Microscopic structured light 3D profilometry: binary defocusing technique vs. sinusoidal fringe projection publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2016.06.009 – volume: 44 year: 2005 ident: 10.1016/j.optlaseng.2020.106192_bib0095 article-title: Least-squares calibration method for fringe projection profilometry publication-title: Opt Eng doi: 10.1117/1.1871832 – volume: 51 start-page: 953 year: 2013 ident: 10.1016/j.optlaseng.2020.106192_bib0127 article-title: High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2013.02.012 – volume: 63 start-page: 1695 year: 2016 ident: 10.1016/j.optlaseng.2020.106192_bib0040 article-title: Recovery of absolute phases for the fringe patterns of three selected wavelengths with improved anti-error capability publication-title: J Mod Opt doi: 10.1080/09500340.2016.1168493 – year: 2015 ident: 10.1016/j.optlaseng.2020.106192_bib0119 article-title: Efficient FFT mapping on GPU for radar processing application: modeling and implementation publication-title: ArXiv150508067 Cs – volume: 52 year: 2013 ident: 10.1016/j.optlaseng.2020.106192_bib0129 article-title: Automatic identification and removal of outliers for high-speed fringe projection profilometry publication-title: Opt Eng doi: 10.1117/1.OE.52.1.013605 – year: 2004 ident: 10.1016/j.optlaseng.2020.106192_bib0083 – volume: 48 start-page: 191 year: 2010 ident: 10.1016/j.optlaseng.2020.106192_bib0099 article-title: Dynamic 3-D shape measurement method: a review publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2009.03.012 – volume: 261 start-page: 164 year: 2006 ident: 10.1016/j.optlaseng.2020.106192_bib0078 article-title: 3D measurement of crater wear by phase shifting method publication-title: Wear doi: 10.1016/j.wear.2005.09.036 – volume: 32 start-page: 2438 year: 2007 ident: 10.1016/j.optlaseng.2020.106192_bib0117 article-title: Three-dimensional shape measurement with an arbitrarily arranged fringe projection profilometry system publication-title: Opt Lett doi: 10.1364/OL.32.002438 – volume: 2 year: 2004 ident: 10.1016/j.optlaseng.2020.106192_bib0007 article-title: PCA-SIFT: a more distinctive representation for local image descriptors publication-title: Comput Vis Pattern Recognit 2004 CVPR 2004 Proc 2004 IEEE Comput Soc Conf On – volume: 25 start-page: 20381 year: 2017 ident: 10.1016/j.optlaseng.2020.106192_bib0032 article-title: Robust and efficient multi-frequency temporal phase unwrapping: optimal fringe frequency and pattern sequence selection publication-title: Opt Express doi: 10.1364/OE.25.020381 – ident: 10.1016/j.optlaseng.2020.106192_bib0096 – start-page: 241 year: 1989 ident: 10.1016/j.optlaseng.2020.106192_bib0130 – volume: 48 year: 2009 ident: 10.1016/j.optlaseng.2020.106192_bib0134 article-title: High dynamic range scanning technique publication-title: Opt Eng doi: 10.1117/1.3099720 – start-page: 3129 year: 2014 ident: 10.1016/j.optlaseng.2020.106192_bib0118 article-title: A solution to pose ambiguity of visual markers using Moiré patterns publication-title: IEEE – volume: 51 start-page: 538 year: 2013 ident: 10.1016/j.optlaseng.2020.106192_bib0085 article-title: An accurate calibration method for a camera with telecentric lenses publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2012.12.008 – volume: 40 start-page: 1653 year: 2001 ident: 10.1016/j.optlaseng.2020.106192_bib0067 article-title: One-grating projection for absolute three-dimensional profiling publication-title: Opt Eng doi: 10.1117/1.1385509 – volume: 121 start-page: 1290 year: 2010 ident: 10.1016/j.optlaseng.2020.106192_bib0137 article-title: Further study of the phase-recovering algorithm for saturated fringe patterns with a larger saturation coefficient in the projection grating phase-shifting profilometry publication-title: Opt - Int J Light Electron Opt doi: 10.1016/j.ijleo.2009.01.007 – volume: 13 start-page: 147 year: 2005 ident: 10.1016/j.optlaseng.2020.106192_bib0072 article-title: Full-field micro surface profilometry using digital fringe projection with spatial encoding principle publication-title: J Phys Conf Ser doi: 10.1088/1742-6596/13/1/034 – volume: 2 start-page: 323 year: 1996 ident: 10.1016/j.optlaseng.2020.106192_bib0011 article-title: Holographic interferometry: principles and methods publication-title: Simul Exp Laser Metrol Proc Int Symp Laser Appl Precis Meas Held Balatonfüred Hungary – volume: 29 start-page: 1439 year: 1990 ident: 10.1016/j.optlaseng.2020.106192_bib0106 article-title: Improved Fourier transform profilometry for the automatic measurement of three-dimensional object shapes publication-title: Opt Eng doi: 10.1117/12.55746 – ident: 10.1016/j.optlaseng.2020.106192_bib0112 – start-page: 92972 year: 2014 ident: 10.1016/j.optlaseng.2020.106192_bib0075 – ident: 10.1016/j.optlaseng.2020.106192_bib0133 – volume: 24 start-page: 1222 year: 2016 ident: 10.1016/j.optlaseng.2020.106192_bib0090 article-title: Flexible calibration method for telecentric fringe projection profilometry systems publication-title: Opt Express doi: 10.1364/OE.24.001222 – year: 2004 ident: 10.1016/j.optlaseng.2020.106192_bib0006 article-title: The harris corner detector publication-title: York Univ – year: 2010 ident: 10.1016/j.optlaseng.2020.106192_bib0012 – ident: 10.1016/j.optlaseng.2020.106192_bib0044 – volume: 1 year: 2005 ident: 10.1016/j.optlaseng.2020.106192_bib0014 article-title: A 3D scanning system based on laser triangulation and variable field of view publication-title: Image Process 2005 ICIP 2005 IEEE Int Conf On – volume: 59 start-page: 56 year: 2014 ident: 10.1016/j.optlaseng.2020.106192_bib0128 article-title: General solution for high dynamic range three-dimensional shape measurement using the fringe projection technique publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2014.03.003 – volume: 30 year: 2019 ident: 10.1016/j.optlaseng.2020.106192_bib0074 article-title: Dynamic 3D measurement of thermal deformation based on geometric-constrained stereo-matching with a stereo microscopic system publication-title: Meas Sci Technol doi: 10.1088/1361-6501/ab35a1 – volume: 38 year: 1999 ident: 10.1016/j.optlaseng.2020.106192_bib0125 article-title: Phase unwrapping by lookup table method: application to phase map with singular points publication-title: Opt Eng – volume: 113 start-page: 14 year: 2019 ident: 10.1016/j.optlaseng.2020.106192_bib0056 article-title: A new microscopic telecentric stereo vision system - calibration, rectification, and three-dimensional reconstruction publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2018.09.011 – volume: 48 start-page: 133 year: 2010 ident: 10.1016/j.optlaseng.2020.106192_bib0004 article-title: Fringe projection techniques: whither we are? publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2009.09.001 – volume: 131 start-page: 724 year: 2017 ident: 10.1016/j.optlaseng.2020.106192_bib0086 article-title: An accurate calibration method for non-overlapping cameras with double-sided telecentric lenses publication-title: Opt - Int J Light Electron Opt doi: 10.1016/j.ijleo.2016.11.156 – volume: 35 start-page: 3682 year: 2010 ident: 10.1016/j.optlaseng.2020.106192_bib0027 article-title: Pulse-width modulation in defocused three-dimensional fringe projection publication-title: Opt Lett doi: 10.1364/OL.35.003682 – volume: 189 start-page: 21 year: 2001 ident: 10.1016/j.optlaseng.2020.106192_bib0050 article-title: Shape measurement of small objects using LCD fringe projection with phase shifting publication-title: Opt Commun doi: 10.1016/S0030-4018(01)01038-0 – volume: 8 start-page: 822 year: 1991 ident: 10.1016/j.optlaseng.2020.106192_bib0108 article-title: Generalized phase-shifting interferometry publication-title: JOSA A doi: 10.1364/JOSAA.8.000822 – start-page: 1173 year: 2010 ident: 10.1016/j.optlaseng.2020.106192_bib0013 article-title: 3D shape scanning with a time-of-flight camera publication-title: Comput Vis Pattern Recognit CVPR 2010 IEEE Conf On, IEEE doi: 10.1109/CVPR.2010.5540082 – volume: 54 start-page: 10541 year: 2015 ident: 10.1016/j.optlaseng.2020.106192_bib0037 article-title: Theoretical considerations on aperiodic sinusoidal fringes in comparison to phase-shifted sinusoidal fringes for high-speed three-dimensional shape measurement publication-title: Appl Opt doi: 10.1364/AO.54.010541 – volume: 46 year: 2007 ident: 10.1016/j.optlaseng.2020.106192_bib0105 article-title: Two-step triangular-pattern phase-shifting method for three-dimensional object-shape measurement publication-title: Opt Eng – volume: 47 start-page: 1 year: 2015 ident: 10.1016/j.optlaseng.2020.106192_bib0121 article-title: A survey of CPU-GPU heterogeneous computing techniques publication-title: ACM Comput Surv doi: 10.1145/2788396 – volume: 26 start-page: 349 year: 1988 ident: 10.1016/j.optlaseng.2020.106192_bib0008 article-title: Phase-measurement interferometry techniques publication-title: Prog Opt doi: 10.1016/S0079-6638(08)70178-1 – volume: 39 start-page: 6430 year: 2000 ident: 10.1016/j.optlaseng.2020.106192_bib0071 article-title: Application of a liquid-crystal spatial light modulator for brightness adaptation in microscopic topometry publication-title: Appl Opt doi: 10.1364/AO.39.006430 – volume: 81 start-page: 103 year: 2015 ident: 10.1016/j.optlaseng.2020.106192_bib0110 article-title: Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry publication-title: Photogramm Eng Remote Sens doi: 10.14358/PERS.81.2.103 – volume: 49 start-page: 1539 year: 2010 ident: 10.1016/j.optlaseng.2020.106192_bib0115 article-title: Least-squares calibration method for fringe projection profilometry considering camera lens distortion publication-title: Appl Opt doi: 10.1364/AO.49.001539 – volume: 48 start-page: 149 year: 2010 ident: 10.1016/j.optlaseng.2020.106192_bib0038 article-title: Recent progresses on real-time 3D shape measurement using digital fringe projection techniques publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2009.03.008 – ident: 10.1016/j.optlaseng.2020.106192_bib0141 – volume: 2 start-page: 435 year: 2008 ident: 10.1016/j.optlaseng.2020.106192_bib0005 article-title: Review of stereo vision algorithms: from software to hardware publication-title: Int J Optomechatronics doi: 10.1080/15599610802438680 – volume: 45 start-page: 1688 year: 2006 ident: 10.1016/j.optlaseng.2020.106192_bib0070 article-title: Polarimetric characterization of liquid-crystal-on-silicon panels publication-title: Appl Opt doi: 10.1364/AO.45.001688 – volume: 54 start-page: 170 year: 2014 ident: 10.1016/j.optlaseng.2020.106192_bib0135 article-title: Rapid in-situ 3D measurement of shiny object based on fast and high dynamic range digital fringe projector publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2013.08.002 – volume: 22 start-page: 31826 year: 2014 ident: 10.1016/j.optlaseng.2020.106192_bib0059 article-title: Telecentric 3D profilometry based on phase-shifting fringe projection publication-title: Opt Express doi: 10.1364/OE.22.031826 – volume: 11 year: 2013 ident: 10.1016/j.optlaseng.2020.106192_bib0061 article-title: Real-time three-dimensional infrared imaging using fringe projection profilometry publication-title: Chin Opt Lett – volume: 281 start-page: 3087 year: 2008 ident: 10.1016/j.optlaseng.2020.106192_bib0138 article-title: Phase deviation analysis and phase retrieval for partial intensity saturation in phase-shifting projected fringe profilometry publication-title: Opt Commun doi: 10.1016/j.optcom.2008.01.070 – ident: 10.1016/j.optlaseng.2020.106192_bib0087 doi: 10.1117/12.888037 – volume: 17 start-page: 21867 year: 2009 ident: 10.1016/j.optlaseng.2020.106192_bib0107 article-title: The general theory of phase shifting algorithms publication-title: Opt Express doi: 10.1364/OE.17.021867 – volume: 4985 start-page: 14 year: 2003 ident: 10.1016/j.optlaseng.2020.106192_bib0069 article-title: Emerging digital micromirror device (DMD) applications. MOEMS disp. imaging syst. publication-title: Int Soc Opt Photonics – volume: 51 year: 2012 ident: 10.1016/j.optlaseng.2020.106192_bib0041 article-title: Real-time geometric lens distortion correction using a graphics processing unit publication-title: Opt Eng doi: 10.1117/1.OE.51.2.027002 – volume: 72 start-page: 156 year: 1982 ident: 10.1016/j.optlaseng.2020.106192_bib0016 article-title: Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry publication-title: J Opt Soc Am doi: 10.1364/JOSA.72.000156 – volume: 46 year: 2007 ident: 10.1016/j.optlaseng.2020.106192_bib0124 article-title: Phase error compensation for a 3-D shape measurement system based on the phase-shifting method publication-title: Opt Eng – volume: 46 start-page: 36 year: 2007 ident: 10.1016/j.optlaseng.2020.106192_bib0126 article-title: Generic nonsinusoidal phase error correction for three-dimensional shape measurement using a digital video projector publication-title: Appl Opt doi: 10.1364/AO.46.000036 – volume: 14 start-page: 9120 year: 2006 ident: 10.1016/j.optlaseng.2020.106192_bib0122 article-title: GPU-assisted high-resolution, real-time 3-D shape measurement publication-title: Opt Express doi: 10.1364/OE.14.009120 – volume: 122 start-page: 1 year: 2019 ident: 10.1016/j.optlaseng.2020.106192_bib0139 article-title: Microscopic 3D measurement of shiny surfaces based on a multi-frequency phase-shifting scheme publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2019.05.019 – volume: 102 start-page: 70 year: 2018 ident: 10.1016/j.optlaseng.2020.106192_bib0035 article-title: Micro Fourier Transform Profilometry (μ FTP): 3D shape measurement at 10,000 frames per second publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2017.10.013 – volume: 24 start-page: 20253 year: 2016 ident: 10.1016/j.optlaseng.2020.106192_bib0063 article-title: Real-time 3-D shape measurement with composite phase-shifting fringes and multi-view system publication-title: Opt Express doi: 10.1364/OE.24.020253 – volume: 42 start-page: 1773 year: 2003 ident: 10.1016/j.optlaseng.2020.106192_bib0053 article-title: Microscopic three-dimensional topometry with ferroelectric liquid-crystal-on-silicon displays publication-title: Appl Opt doi: 10.1364/AO.42.001773 |
SSID | ssj0016411 |
Score | 2.6387665 |
SecondaryResourceType | review_article |
Snippet | •An overview of the state-of-the-art microscopic fringe projection profilometry (MFPP) works is provided.•Measurement principles, systems structures, and key... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106192 |
SubjectTerms | Fringe projection Microscopic Optical metrology Three-dimensional sensing |
Title | Microscopic fringe projection profilometry: A review |
URI | https://dx.doi.org/10.1016/j.optlaseng.2020.106192 |
Volume | 135 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB1KRdCDaFWsHyUHr7FJdrLb9FaKpVrag1jsLWQ3u1LRtNR48OJvdzeblBaEHjyFLBkIj2Hm7e6bGYDbhDOdNThzeYTKRYHU5VRGruH6KIKOT5QpTh5P6HCKj7NwVoN-VQtjZJVl7LcxvYjW5Uq7RLO9nM_bRpZU3HppCqJ3zkWhOSIzXn73s5Z56N2Ab2cSInHN11sar8Uy1xxVZq96oxiYVWrvRP_IUBtZZ3AMRyVddHr2j06gJrMGHG40EWzAfiHiFJ-ngGOjrjN1JnPhqOLAzilPWjT6jh3PvfiQ-eq76_QcW7VyBtPB_XN_6JZTEVyBxMtd9DkLORepIJLTSHmJGZURpSqlAaYJikincCpRIeOCewkJiNI0BKmnOhr4gJxDPVtk8gKcVKmQoekYjx2UzE8izR5YEhIVKsFF1ARaIRGLsmW4mVzxHlfasLd4DWFsIIwthE3w1oZL2zVjt0m3gjrecoBYx_Zdxpf_Mb6CA_NmNSrXUM9XX_JGM42ctwpXasFe72E0nJjn6Oll9AvD19UJ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB1Ki6gH0apYP3PwGppkJ5umt1Isqf04tdBbyG52paJpqfHgv3c3m5QWhB68bhhYXpaZtztvZgCeExaoqMECm4UobeRIbUZFaGuuj9zruETq4uTJlEZzfF34ixr0q1oYLassfb_x6YW3LlfaJZrt9XLZ1rKkIuulKIi6OetC84buTuXXodEbjqLpNplA0TVjCZHY2mBP5rVa54qmiuxN3RU9vUpNWvSPILUTeAbncFYyRqtnNnUBNZE14XSnj2ATjgodJ_-6BJxogZ0uNVlySxZvdlb52KJ-gGUmdK8-Rb756Vo9yxSuXMF88DLrR3Y5GMHmSJzcRpcFPmM85UQwGkon0dMywlSm1MM0QR6qKE4FSgwYZ05CPCIVE0HqyI7C3iPXUM9WmbgBK5XSD1A3jccOisBNQkUggsQn0pec8bAFtEIi5mXXcD284iOu5GHv8RbCWEMYGwhb4GwN16ZxxmGTbgV1vHcGYuXeDxnf_sf4CY6j2WQcj4fT0R2c6C9GsnIP9XzzLR4U8cjZY3mwfgFvWNYX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microscopic+fringe+projection+profilometry%3A+A+review&rft.jtitle=Optics+and+lasers+in+engineering&rft.au=Hu%2C+Yan&rft.au=Chen%2C+Qian&rft.au=Feng%2C+Shijie&rft.au=Zuo%2C+Chao&rft.date=2020-12-01&rft.issn=0143-8166&rft.volume=135&rft.spage=106192&rft_id=info:doi/10.1016%2Fj.optlaseng.2020.106192&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_optlaseng_2020_106192 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-8166&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-8166&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-8166&client=summon |