Microscopic fringe projection profilometry: A review

•An overview of the state-of-the-art microscopic fringe projection profilometry (MFPP) works is provided.•Measurement principles, systems structures, and key performance indexes of MFPP systems are analyzed and compared.•The potential applications of MFPP are discussed.•Some recommendations about op...

Full description

Saved in:
Bibliographic Details
Published inOptics and lasers in engineering Vol. 135; p. 106192
Main Authors Hu, Yan, Chen, Qian, Feng, Shijie, Zuo, Chao
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •An overview of the state-of-the-art microscopic fringe projection profilometry (MFPP) works is provided.•Measurement principles, systems structures, and key performance indexes of MFPP systems are analyzed and compared.•The potential applications of MFPP are discussed.•Some recommendations about optimum MFPP optical system design are provided. Structured light three-dimensional (3D) measurement technology is considered one of the most reliable 3D data acquisition methods. Driven by the demand for high-precision 3D data acquisition for miniaturized samples in many fields such as surface condition analysis, mechanical function test, and micro-electro-mechanical systems (MEMS) quality inspection, microscopic fringe projection profilometry (MFPP) has been developed rapidly during recent decades. Significant progress has been made in different aspects of MFPP, including its optical configurations, corresponding system calibrations, phase retrieval algorithms, and 3D coordinate reconstruction methods. In addition, the rapid advance in high-frame-rate image sensors, high-speed digital projection technology, and high-performance processors become a powerful vehicle that motivates MFPP techniques to be increasingly applied in high-speed, real-time 3D shape measurement of dynamic samples. In this paper, we present an overview of these state-of-the-art MFPP works by analyzing and comparing the measurement principles, systems structures, and key performance indexes such as the accuracy, field of view (FOV), and speed. We also discuss the potential applications of MFPP and give some recommendations about optimum MFPP optical system design for reference in related applications in the future.
AbstractList •An overview of the state-of-the-art microscopic fringe projection profilometry (MFPP) works is provided.•Measurement principles, systems structures, and key performance indexes of MFPP systems are analyzed and compared.•The potential applications of MFPP are discussed.•Some recommendations about optimum MFPP optical system design are provided. Structured light three-dimensional (3D) measurement technology is considered one of the most reliable 3D data acquisition methods. Driven by the demand for high-precision 3D data acquisition for miniaturized samples in many fields such as surface condition analysis, mechanical function test, and micro-electro-mechanical systems (MEMS) quality inspection, microscopic fringe projection profilometry (MFPP) has been developed rapidly during recent decades. Significant progress has been made in different aspects of MFPP, including its optical configurations, corresponding system calibrations, phase retrieval algorithms, and 3D coordinate reconstruction methods. In addition, the rapid advance in high-frame-rate image sensors, high-speed digital projection technology, and high-performance processors become a powerful vehicle that motivates MFPP techniques to be increasingly applied in high-speed, real-time 3D shape measurement of dynamic samples. In this paper, we present an overview of these state-of-the-art MFPP works by analyzing and comparing the measurement principles, systems structures, and key performance indexes such as the accuracy, field of view (FOV), and speed. We also discuss the potential applications of MFPP and give some recommendations about optimum MFPP optical system design for reference in related applications in the future.
ArticleNumber 106192
Author Feng, Shijie
Hu, Yan
Chen, Qian
Zuo, Chao
Author_xml – sequence: 1
  givenname: Yan
  surname: Hu
  fullname: Hu, Yan
  organization: Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China
– sequence: 2
  givenname: Qian
  surname: Chen
  fullname: Chen, Qian
  email: chenqian@njust.edu.cn
  organization: Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China
– sequence: 3
  givenname: Shijie
  surname: Feng
  fullname: Feng, Shijie
  organization: Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China
– sequence: 4
  givenname: Chao
  surname: Zuo
  fullname: Zuo, Chao
  email: zuochao@njust.edu.cn
  organization: Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China
BookMark eNqNkE1Lw0AQhhepYFr9DeYPpO6Xm0TwEIpWoeJFz8tmMls2pNmwG5T-exMqHrzoaYaB5-WdZ0kWve-RkGtG14wyddOu_TB2JmK_X3PK56tiJT8jCStykVFB-YIklEmRFUypC7KMsaUTKRlLiHxxEHwEPzhIbXD9HtMh-BZhdL6fV-s6f8AxHO_SKg344fDzkpxb00W8-p4r8v748LZ5ynav2-dNtctACjpmktX5bV1DAwJrVVpqCiFl2dhGcdkYCSXjpUJpZV5DTY3gwipRSkVtISxwsSL3p9y5YgxoNbjRzMXGYFynGdWzAt3qHwV6VqBPCiY-_8UPwR1MOP6DrE4kTu9NLwcdwWEP2LgwqdGNd39mfAFEFX5z
CitedBy_id crossref_primary_10_1080_17415993_2021_1887189
crossref_primary_10_1109_TIM_2022_3196738
crossref_primary_10_1016_j_measurement_2022_112321
crossref_primary_10_1364_AO_538646
crossref_primary_10_1007_s00170_022_09084_5
crossref_primary_10_1007_s12633_020_00883_7
crossref_primary_10_1109_TIM_2023_3284140
crossref_primary_10_1140_epjp_s13360_021_01706_3
crossref_primary_10_1364_OE_449468
crossref_primary_10_1117_1_AP_5_2_026003
crossref_primary_10_1016_j_optlaseng_2021_106822
crossref_primary_10_1016_j_comptc_2021_113299
crossref_primary_10_1093_jcde_qwab026
crossref_primary_10_1063_5_0165363
crossref_primary_10_1016_j_optlaseng_2024_108049
crossref_primary_10_3390_s21082574
crossref_primary_10_1109_TIM_2023_3332934
crossref_primary_10_3390_rs15092333
crossref_primary_10_3390_s24165157
crossref_primary_10_1109_TIM_2024_3522660
crossref_primary_10_1364_AO_413586
crossref_primary_10_1007_s00340_022_07919_3
crossref_primary_10_1007_s12647_024_00774_x
crossref_primary_10_3390_s23020680
crossref_primary_10_1007_s00340_023_08142_4
crossref_primary_10_1364_AO_488041
crossref_primary_10_1016_j_optlaseng_2023_107866
crossref_primary_10_1016_j_optlaseng_2023_107623
crossref_primary_10_1007_s13204_021_01779_7
crossref_primary_10_1364_JOSAB_421756
crossref_primary_10_1109_TIM_2024_3390210
crossref_primary_10_1007_s00366_021_01390_y
crossref_primary_10_1080_09500340_2023_2206928
crossref_primary_10_1016_j_knosys_2021_107529
crossref_primary_10_1109_TIM_2025_3547118
crossref_primary_10_1360_SST_2024_0082
crossref_primary_10_3390_agronomy15010029
crossref_primary_10_1016_j_ijhydene_2021_02_070
crossref_primary_10_1364_PRJ_451818
crossref_primary_10_1016_j_optlaseng_2023_107620
crossref_primary_10_1080_15397734_2021_1919526
crossref_primary_10_1007_s11082_021_02973_1
crossref_primary_10_1007_s42823_022_00338_6
crossref_primary_10_1364_JOSAB_418804
crossref_primary_10_1016_j_oceaneng_2024_117426
crossref_primary_10_1103_PhysRevApplied_18_034055
crossref_primary_10_1140_epjp_s13360_021_01761_w
crossref_primary_10_1080_15397734_2021_1907758
crossref_primary_10_3390_photonics9030148
crossref_primary_10_1007_s10668_021_01382_4
crossref_primary_10_1016_j_optcom_2024_131134
crossref_primary_10_1109_TMECH_2024_3396222
crossref_primary_10_1016_j_ijleo_2022_170263
crossref_primary_10_1007_s00170_021_07330_w
crossref_primary_10_1007_s00366_021_01363_1
crossref_primary_10_1364_AO_445063
crossref_primary_10_1364_OE_439825
crossref_primary_10_1109_TMECH_2023_3334717
crossref_primary_10_1007_s00366_021_01288_9
crossref_primary_10_1016_j_csite_2021_100939
crossref_primary_10_1364_OE_461174
crossref_primary_10_1016_j_egyr_2021_06_064
crossref_primary_10_1088_1402_4896_ad9c22
crossref_primary_10_1364_OE_452361
crossref_primary_10_1364_OE_466069
crossref_primary_10_3788_IRLA20220088
crossref_primary_10_1088_2051_672X_ac6ff8
crossref_primary_10_1016_j_tws_2021_108101
crossref_primary_10_1364_OE_448019
crossref_primary_10_1007_s00366_021_01450_3
crossref_primary_10_1016_j_measurement_2024_115529
crossref_primary_10_1016_j_optlaseng_2022_107342
crossref_primary_10_1016_j_measurement_2023_113609
crossref_primary_10_1364_OE_470564
crossref_primary_10_1364_OL_516093
crossref_primary_10_1007_s11468_021_01399_5
crossref_primary_10_1016_j_measurement_2021_109675
crossref_primary_10_1016_j_optlaseng_2022_107183
crossref_primary_10_1016_j_optlaseng_2023_107482
crossref_primary_10_1016_j_gsf_2021_101230
crossref_primary_10_1140_epjp_s13360_021_01840_y
crossref_primary_10_1016_j_ejrh_2021_100848
crossref_primary_10_1016_j_optlaseng_2023_107884
crossref_primary_10_3390_computers13110290
crossref_primary_10_1080_15397734_2021_1903493
crossref_primary_10_1016_j_optcom_2025_131591
crossref_primary_10_1007_s00542_023_05426_9
crossref_primary_10_1007_s00366_021_01420_9
crossref_primary_10_1117_1_OE_63_10_104104
crossref_primary_10_1007_s11224_021_01799_7
crossref_primary_10_1016_j_optlastec_2024_112324
crossref_primary_10_1364_AO_438037
crossref_primary_10_1016_j_measurement_2022_112247
crossref_primary_10_1364_AO_507420
crossref_primary_10_3390_electronics10222871
crossref_primary_10_1109_LPT_2023_3296912
crossref_primary_10_1016_j_ast_2021_106846
crossref_primary_10_1080_17455030_2021_1926572
crossref_primary_10_1007_s00500_021_05839_6
crossref_primary_10_1142_S0129183121501412
crossref_primary_10_1007_s12633_021_01081_9
crossref_primary_10_3390_photonics8120592
crossref_primary_10_1016_j_neucom_2024_127493
crossref_primary_10_1186_s40537_024_00901_0
crossref_primary_10_1016_j_optlaseng_2021_106622
crossref_primary_10_1007_s00894_021_04727_y
crossref_primary_10_1007_s00138_022_01355_1
crossref_primary_10_1016_j_precisioneng_2021_09_004
crossref_primary_10_1080_17455030_2021_1938285
crossref_primary_10_3389_feart_2021_663678
crossref_primary_10_1364_AO_517997
crossref_primary_10_1364_OE_524898
crossref_primary_10_1016_j_compbiomed_2021_104427
crossref_primary_10_3390_app11094143
crossref_primary_10_1016_j_optlastec_2024_110679
crossref_primary_10_1371_journal_pone_0251744
crossref_primary_10_1364_OL_498283
crossref_primary_10_1016_j_optlaseng_2022_106990
crossref_primary_10_1080_03067319_2021_1882448
crossref_primary_10_3390_s23156663
crossref_primary_10_1016_j_jmrt_2020_12_061
crossref_primary_10_1080_10106049_2021_1926558
crossref_primary_10_1364_OE_549266
crossref_primary_10_1364_OE_506370
crossref_primary_10_3390_s22249805
crossref_primary_10_1088_1742_6596_2478_6_062015
crossref_primary_10_1088_1742_6596_2478_6_062014
crossref_primary_10_1117_1_OE_61_8_084102
crossref_primary_10_1007_s00366_021_01440_5
crossref_primary_10_1080_15397734_2021_1878904
crossref_primary_10_1109_TIM_2023_3331396
crossref_primary_10_1007_s10853_024_09726_x
crossref_primary_10_1166_jbmb_2021_2025
crossref_primary_10_1017_S1431927621013829
crossref_primary_10_1364_PRJ_455574
crossref_primary_10_1007_s13204_021_01728_4
crossref_primary_10_1016_j_eti_2021_101498
crossref_primary_10_1007_s12596_024_02283_1
crossref_primary_10_1364_AO_499736
crossref_primary_10_1364_AO_493941
crossref_primary_10_1088_1402_4896_ac018a
crossref_primary_10_1117_1_OE_63_1_018101
crossref_primary_10_29026_oea_2022_210021
crossref_primary_10_1007_s00366_021_01388_6
crossref_primary_10_1016_j_egyr_2021_05_002
crossref_primary_10_1016_j_optlaseng_2025_108900
crossref_primary_10_1007_s10825_021_01726_3
crossref_primary_10_1109_TIM_2024_3427804
crossref_primary_10_3390_s24092872
crossref_primary_10_1016_j_energy_2021_120621
crossref_primary_10_1109_TIM_2023_3277991
crossref_primary_10_1155_2021_7646813
crossref_primary_10_1007_s13204_021_01845_0
crossref_primary_10_1016_j_optlastec_2021_107189
crossref_primary_10_1364_AO_483735
crossref_primary_10_1016_j_jmrt_2021_03_048
crossref_primary_10_3390_s24144733
crossref_primary_10_3390_machines13040261
crossref_primary_10_1364_OE_555002
crossref_primary_10_1016_j_optlaseng_2021_106793
crossref_primary_10_3390_photonics9030173
crossref_primary_10_1007_s00366_021_01377_9
crossref_primary_10_1142_S0129183121501047
crossref_primary_10_1016_j_optlaseng_2023_107967
crossref_primary_10_1007_s13399_021_01273_8
crossref_primary_10_3390_photonics9120986
crossref_primary_10_1109_JSEN_2023_3280166
crossref_primary_10_1038_s41467_024_46267_y
crossref_primary_10_1109_TII_2024_3507177
crossref_primary_10_1364_AO_461168
crossref_primary_10_1364_OPTCON_485013
Cites_doi 10.1364/AO.33.007477
10.1016/j.ijleo.2013.03.070
10.1364/OL.35.000934
10.1364/AO.41.004503
10.1364/OE.25.019408
10.1109/JRA.1987.1087109
10.1016/j.optcom.2014.04.067
10.1364/AO.57.00A181
10.1016/j.optlaseng.2016.01.011
10.1109/ACCESS.2019.2913181
10.1016/S0030-4018(02)02290-3
10.1364/AO.51.004477
10.1364/AO.43.002695
10.1117/1.602347
10.1364/OL.36.001257
10.1016/S0030-3992(02)00070-1
10.5772/63825
10.1117/1.2147311
10.1364/OE.20.019493
10.1364/AO.26.002810
10.1364/AO.38.006565
10.1364/AO.48.001052
10.1016/j.ijleo.2008.05.010
10.1109/34.888718
10.1364/AO.54.004953
10.1364/OE.25.031492
10.1364/OE.23.006846
10.1016/j.optlaseng.2008.08.003
10.1364/AO.57.000772
10.1063/1.95048
10.1364/OL.38.001389
10.1117/1.602438
10.1088/1361-6501/aa5a2d
10.1117/1.601576
10.1016/j.optlaseng.2016.04.009
10.1364/AO.26.002504
10.1364/OE.23.025795
10.1016/j.optlaseng.2009.12.016
10.1016/j.optlaseng.2009.06.005
10.1117/1.2802546
10.1016/j.optlaseng.2018.04.019
10.1364/AO.23.003105
10.1364/AO.41.005896
10.1364/AO.54.010055
10.1109/21.44067
10.1088/1361-6501/aa7277
10.1364/AO.51.000861
10.1364/OPEX.13.003110
10.1016/j.optlaseng.2014.01.021
10.1016/j.optlaseng.2016.04.022
10.1117/1.2336196
10.1016/j.optlaseng.2014.09.008
10.1016/S0143-8166(01)00023-9
10.1364/AO.54.006865
10.1364/AO.57.002352
10.1016/j.optlaseng.2016.06.009
10.1117/1.1871832
10.1016/j.optlaseng.2013.02.012
10.1080/09500340.2016.1168493
10.1117/1.OE.52.1.013605
10.1016/j.optlaseng.2009.03.012
10.1016/j.wear.2005.09.036
10.1364/OL.32.002438
10.1364/OE.25.020381
10.1117/1.3099720
10.1016/j.optlaseng.2012.12.008
10.1117/1.1385509
10.1016/j.ijleo.2009.01.007
10.1088/1742-6596/13/1/034
10.1117/12.55746
10.1364/OE.24.001222
10.1016/j.optlaseng.2014.03.003
10.1088/1361-6501/ab35a1
10.1016/j.optlaseng.2018.09.011
10.1016/j.optlaseng.2009.09.001
10.1016/j.ijleo.2016.11.156
10.1364/OL.35.003682
10.1016/S0030-4018(01)01038-0
10.1364/JOSAA.8.000822
10.1109/CVPR.2010.5540082
10.1364/AO.54.010541
10.1145/2788396
10.1016/S0079-6638(08)70178-1
10.1364/AO.39.006430
10.14358/PERS.81.2.103
10.1364/AO.49.001539
10.1016/j.optlaseng.2009.03.008
10.1080/15599610802438680
10.1364/AO.45.001688
10.1016/j.optlaseng.2013.08.002
10.1364/OE.22.031826
10.1016/j.optcom.2008.01.070
10.1117/12.888037
10.1364/OE.17.021867
10.1117/1.OE.51.2.027002
10.1364/JOSA.72.000156
10.1364/AO.46.000036
10.1364/OE.14.009120
10.1016/j.optlaseng.2019.05.019
10.1016/j.optlaseng.2017.10.013
10.1364/OE.24.020253
10.1364/AO.42.001773
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.optlaseng.2020.106192
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-0302
ExternalDocumentID 10_1016_j_optlaseng_2020_106192
S0143816619319815
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M38
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SPG
SSM
SSQ
SST
SSZ
T5K
VOH
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c430t-41b75bbcdc3eb69f0a83449dfd624da4c91296e4f47bcb0a323f639460f83fc23
IEDL.DBID .~1
ISSN 0143-8166
IngestDate Thu Apr 24 22:52:21 EDT 2025
Tue Jul 01 00:32:35 EDT 2025
Fri Feb 23 02:45:10 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Microscopic
Fringe projection
Three-dimensional sensing
Optical metrology
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c430t-41b75bbcdc3eb69f0a83449dfd624da4c91296e4f47bcb0a323f639460f83fc23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0143816619319815
ParticipantIDs crossref_citationtrail_10_1016_j_optlaseng_2020_106192
crossref_primary_10_1016_j_optlaseng_2020_106192
elsevier_sciencedirect_doi_10_1016_j_optlaseng_2020_106192
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationTitle Optics and lasers in engineering
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hariharan, Oreb, Eiju (bib0102) 1987; 26
Zuo, Huang, Zhang, Chen, Asundi (bib0109) 2016; 85
(accessed January 31, 2020).
Zhang (bib0038) 2010; 48
Lai, Yatagai (bib0108) 1991; 8
(accessed November 24, 2019).
Mittal, Vetter (bib0121) 2015; 47
Hu, He, Wu (bib0137) 2010; 121
Zuo, Feng, Huang, Tao, Yin, Chen (bib0019) 2018; 109
Zhong, Li, Zhou, Zhan, Liu, Shi (bib0062) 2014
Liu, Lin, Yao (bib0081) 2017; 25
Zhu, Liu, Shi, He (bib0060) 2010; 48
Chen, Guo, Wang, Wu, Fu, Hu (bib0079) 2013
Wolfe, Chipman (bib0070) 2006; 45
Pawley (bib0012) 2010
Li, Zhong, Li, Zhou, Shi (bib0093) 2013; 38
Feng, Chen, Zuo, Li, Shen, Feng (bib0129) 2013; 52
High-resolution (bib0021) 2006; 45
Yin, Wang, Gao, Liu, Peng (bib0080) 2015; 23
Huang (bib0022) 2006; 45
DLP Overview | DLP Products | TI.com n.d.
Ko¨rner (bib0067) 2001; 40
Feng, Zhang, Chen, Zuo, Li, Shen (bib0128) 2014; 59
Van der Jeught, Dirckx (bib0034) 2016; 87
Chen, Liao, Lai (bib0072) 2005; 13
Gardner, Varadan (bib0047) 2001
Su, Zhang (bib0099) 2010; 48
Steinchen, Yang (bib0009) 2003; 93
Proll, Nivet, Voland, Tiziani (bib0071) 2000; 39
Huang, Chua, Asundi (bib0115) 2010; 49
Hu, He (bib0131) 2009; 47
Tanaka, Sumi, Matsumoto (bib0118) 2014
Polyga - 3D Scanning Technologies for Professionals. Polyga n.d.
Creath (bib0066) 1987; 26
Morrison G. DLP vs LCD vs LCoS: projector tech pros and cons. CNET n.d.
Derpanis (bib0006) 2004
Zhang (bib0030) 2010; 35
Li, Liu, Tian (bib0059) 2014; 22
Dudley, Duncan, Slaughter (bib0069) 2003; 4985
Abdel-Aziz, Karara (bib0110) 2015; 81
Su X, Chen W. Fourier transform profilometry: a review. Opt Lasers Eng2001:22.
Zuo, Chen, Feng, Feng, Gu, Sui (bib0028) 2012; 51
Tao, Chen, Da, Feng, Hu, Zuo (bib0063) 2016; 24
Sun, Zuo, Feng, Yu, Zhang, Chen (bib0026) 2015; 66
Schreiber, Notni (bib0024) 2000; 39
Abramovici, Emmert, Stroud (bib0003) 2001
Howard, Reed, Reed (bib0046) 2004
Zhang, Ma, Guo, Zhang, Chen (bib0116) 2011; 36
Yu, Huang, Zhang, Gao, Jiang (bib0075) 2014
Zhang, Yau (bib0103) 2007; 46
Scheffer, Nehring (bib0068) 1984; 45
Rao, Da, Kong, Huang (bib0090) 2016; 24
Sansoni, Carocci, Rodella (bib0031) 1999; 38
Zhang, Yau (bib0126) 2007; 46
Kreis (bib0011) 1996; 2
Quan, Tay, He, Kang, Shang (bib0077) 2002; 34
Wang, Nguyen, Barnes (bib0114) 2010; 48
Chen, He, Hu (bib0138) 2008; 281
Guo (bib0095) 2005; 44
Franca, Gazziro, Ide, Saito (bib0014) 2005; 1
Quan, He, Wang, Tay, Shang (bib0050) 2001; 189
Bergach, Kofman, de Simone, Tissot, Syska (bib0119) 2015
Lin, Su (bib0097) 1990; 29
Ke, Sukthankar (bib0007) 2004; 2
Zhang, Su (bib0065) 2005; 13
Qian (bib0018) 2004; 43
Heist, Kühmstedt, Tünnermann, Notni (bib0037) 2015; 54
Van der Jeught (bib0041) 2012; 51
Zuo, Chen, Feng, Gu, Asundi (bib0061) 2013; 11
Zuo, Tao, Feng, Huang, Asundi, Chen (bib0035) 2018; 102
Li, Hu, Tao, Feng, Zhang, Zhang (bib0033) 2018; 57
Long, Xi, Zhang, Zhu, Cheng, Li (bib0040) 2016; 63
Yao, Liu (bib0084) 2016; 13
Tsai RY.An efficient and accurate camera calibration technique for 3D machine vision. Proc IEEE Conf on Comput Vis Pattern Recognit1986:364–74.
Wang, Zhang (bib0029) 2012; 51
Proll, Nivet, Körner, Tiziani (bib0053) 2003; 42
Zhang, Huang, Chiang (bib0051) 2002; 41
Electropages. DLP vs. LCD vs. LED vs. LCoS vs. laser: shedding light on projector technology n.d.
Wang, Yin, Deng, Meng, Liu, Peng (bib0082) 2017; 25
Hu, Chen, Liang, Feng, Tao, Zuo (bib0139) 2019; 122
Hu, Feng, Tao, Zuo, Chen, Asundi (bib0089) 2018; 10827
Zhao, Liang, Diao, Jiang (bib0135) 2014; 54
Chen, Liao, Zhang (bib0092) 2014; 57
Raab S. Three dimensional coordinate measuring apparatus. US5402582A, 1995.
Takeda, Ina, Kobayashi (bib0016) 1982; 72
Hu, Chen, Tao, Li, Zuo (bib0058) 2017; 28
CAI Z, LIU X, PENG X, YIN Y, LI A, WU J, et al. Structured light field 3D imaging n.d.:11.
Li, Peng, Yin, Liu, Zhao, Körner (bib0052) 2013; 124
Zhang, Huang (bib0124) 2007; 46
Li, Zhang (bib0057) 2015; 23
Zuo, Chen, Gu, Feng, Feng, Li (bib0127) 2013; 51
Su, Li, Guo, Su, Grover (bib0130) 1989
Hartley, Zisserman (bib0083) 2004
Peng, Wang, Deng, Liu, Yin, Peng (bib0042) 2015; 54
Feng, Chen, Zuo (bib0120) 2015; 54
Jia, Kofman, English (bib0105) 2007; 46
Guo, Huang, Huang, Yoshizawa, Harding (bib0132) 2008
Zhong, Wang (bib0125) 1999; 38
Zhang (bib0055) 2000; 22
Zhang, Li, Ren, Dong (bib0091) 2019; 7
Srinivasan, Liu, Halioua (bib0100) 1984; 23
Li, Zhang (bib0064) 2017; 96
Haskamp K, Kästner M, Reithmeier E. Accurate calibration of a fringe projection system by considering telecentricity. In: Lehmann PH, Osten W, Gastinger K, editors., 2011, p. 80821B. doi:10.1117/12.888037.
Hu, Chen, Feng, Tao, Li, Zuo (bib0025) 2017; 28
Yau (bib0134) 2009; 48
Qi, Wang, Huang, Xing, Gao (bib0039) 2018; 57
Lazaros (bib0005) 2008; 2
Wang, Du, Park, Xie (bib0020) 2009; 48
Servin, Estrada, Quiroga (bib0107) 2009; 17
Creath (bib0008) 1988; 26
Zhang, Chen, Tao, Feng, Hu, Li (bib0032) 2017; 25
Hu, Chen, Feng, Tao, Asundi, Zuo (bib0056) 2019; 113
Zhang, Royer, Yau (bib0122) 2006; 14
Li, Su, Guo (bib0106) 1990; 29
Chen, Brown, Song (bib0001) 2000; 39
Hu, Liang, Tao, Feng, Zuo, Zhang (bib0074) 2019; 30
Jones, Wykes (bib0010) 1989; 6
Li, Tian (bib0085) 2013; 51
Huang, Zhang, Chiang (bib0104) 2005; 44
Gorthi, Rastogi (bib0004) 2010; 48
DLP vs LCD vs LCoS Projector: Which should you buy? n.d.
Sciammarella, Lamberti, Boccaccio (bib0015) 2008; 47
Van der Jeught, Soons, Dirckx (bib0076) 2015; 54
Huiyang, Zhong, Xianmin (bib0088) 2013
Wang, Wong, Hong (bib0078) 2006; 261
Kowarschik, Kuehmstedt, Gerber, Schreiber, Notni (bib0023) 2000; 39
Tsai (bib0111) 1987; 3
Ayubi, Ayubi, Martino, Ferrari (bib0027) 2010; 35
Bruning JH, Herriott DR, Gallagher JE, Rosenfeld DP, White AD, Brangaccio DJ. Digital wavefront measuring interferometer for testing optical surfaces and lenses n.d.:11.
Li, Gibson, Middendorf, Wang, Zhang (bib0143) 2013
Leonhardt, Droste, Tiziani (bib0048) 1994; 33
Hu, He, Chen (bib0136) 2010; 121
Cui, Schuon, Chan, Thrun, Theobalt (bib0013) 2010
Dhond, Aggarwal (bib0094) 1989; 19
Zuo, Chen, Gu, Feng, Feng (bib0036) 2012; 20
Feng, Chen, Zuo, Sun, Yu (bib0123) 2014; 329
Du, Wang (bib0117) 2007; 32
Precise Industrial 3D Metrology. GOM n.d.
Liu, Su, Reichard, Yin (bib0113) 2003; 216
Huang, Hu, Chiang (bib0101) 2002; 41
Guan, Yao, Liu, Shang (bib0086) 2017; 131
Hu, Chen, Zhang, Feng, Tao, Li (bib0073) 2018; 57
(accessed August 8, 2019).
Li, Bu, Zhang (bib0043) 2016; 85
Windecker, Fleischer, Tiziani (bib0049) 1997; 36
Podder, Zaman Khan, Haque Khan, Muktadir Rahman (bib0098) 2014; 96
Zhang (10.1016/j.optlaseng.2020.106192_bib0065) 2005; 13
Tsai (10.1016/j.optlaseng.2020.106192_bib0111) 1987; 3
10.1016/j.optlaseng.2020.106192_bib0045
Proll (10.1016/j.optlaseng.2020.106192_bib0053) 2003; 42
10.1016/j.optlaseng.2020.106192_bib0044
Van der Jeught (10.1016/j.optlaseng.2020.106192_bib0041) 2012; 51
Leonhardt (10.1016/j.optlaseng.2020.106192_bib0048) 1994; 33
Du (10.1016/j.optlaseng.2020.106192_bib0117) 2007; 32
Peng (10.1016/j.optlaseng.2020.106192_bib0042) 2015; 54
Zhong (10.1016/j.optlaseng.2020.106192_bib0062) 2014
Li (10.1016/j.optlaseng.2020.106192_bib0093) 2013; 38
Zhong (10.1016/j.optlaseng.2020.106192_bib0125) 1999; 38
Zuo (10.1016/j.optlaseng.2020.106192_bib0028) 2012; 51
Abramovici (10.1016/j.optlaseng.2020.106192_bib0003) 2001
Van der Jeught (10.1016/j.optlaseng.2020.106192_bib0034) 2016; 87
Qi (10.1016/j.optlaseng.2020.106192_bib0039) 2018; 57
Quan (10.1016/j.optlaseng.2020.106192_bib0050) 2001; 189
Li (10.1016/j.optlaseng.2020.106192_bib0052) 2013; 124
Zhao (10.1016/j.optlaseng.2020.106192_bib0135) 2014; 54
Schreiber (10.1016/j.optlaseng.2020.106192_bib0024) 2000; 39
Su (10.1016/j.optlaseng.2020.106192_bib0130) 1989
Guo (10.1016/j.optlaseng.2020.106192_bib0132) 2008
10.1016/j.optlaseng.2020.106192_bib0054
Wolfe (10.1016/j.optlaseng.2020.106192_bib0070) 2006; 45
Hu (10.1016/j.optlaseng.2020.106192_bib0089) 2018; 10827
Lin (10.1016/j.optlaseng.2020.106192_bib0097) 1990; 29
Zuo (10.1016/j.optlaseng.2020.106192_bib0019) 2018; 109
Dudley (10.1016/j.optlaseng.2020.106192_bib0069) 2003; 4985
Sansoni (10.1016/j.optlaseng.2020.106192_bib0031) 1999; 38
Podder (10.1016/j.optlaseng.2020.106192_bib0098) 2014; 96
Zhang (10.1016/j.optlaseng.2020.106192_bib0122) 2006; 14
Hu (10.1016/j.optlaseng.2020.106192_bib0136) 2010; 121
Ayubi (10.1016/j.optlaseng.2020.106192_bib0027) 2010; 35
Hartley (10.1016/j.optlaseng.2020.106192_bib0083) 2004
Ke (10.1016/j.optlaseng.2020.106192_bib0007) 2004; 2
Sciammarella (10.1016/j.optlaseng.2020.106192_bib0015) 2008; 47
Qian (10.1016/j.optlaseng.2020.106192_bib0018) 2004; 43
Hu (10.1016/j.optlaseng.2020.106192_bib0137) 2010; 121
Ko¨rner (10.1016/j.optlaseng.2020.106192_bib0067) 2001; 40
Feng (10.1016/j.optlaseng.2020.106192_bib0120) 2015; 54
Tao (10.1016/j.optlaseng.2020.106192_bib0063) 2016; 24
Wang (10.1016/j.optlaseng.2020.106192_bib0029) 2012; 51
Hariharan (10.1016/j.optlaseng.2020.106192_bib0102) 1987; 26
Yin (10.1016/j.optlaseng.2020.106192_bib0080) 2015; 23
Windecker (10.1016/j.optlaseng.2020.106192_bib0049) 1997; 36
Zhang (10.1016/j.optlaseng.2020.106192_bib0055) 2000; 22
Hu (10.1016/j.optlaseng.2020.106192_bib0131) 2009; 47
Heist (10.1016/j.optlaseng.2020.106192_bib0037) 2015; 54
Zuo (10.1016/j.optlaseng.2020.106192_bib0061) 2013; 11
Hu (10.1016/j.optlaseng.2020.106192_bib0139) 2019; 122
Zhang (10.1016/j.optlaseng.2020.106192_bib0051) 2002; 41
Hu (10.1016/j.optlaseng.2020.106192_bib0056) 2019; 113
Lai (10.1016/j.optlaseng.2020.106192_bib0108) 1991; 8
Creath (10.1016/j.optlaseng.2020.106192_bib0066) 1987; 26
Chen (10.1016/j.optlaseng.2020.106192_bib0072) 2005; 13
Guan (10.1016/j.optlaseng.2020.106192_bib0086) 2017; 131
Bergach (10.1016/j.optlaseng.2020.106192_bib0119) 2015
Liu (10.1016/j.optlaseng.2020.106192_bib0081) 2017; 25
Zhu (10.1016/j.optlaseng.2020.106192_bib0060) 2010; 48
10.1016/j.optlaseng.2020.106192_bib0112
Chen (10.1016/j.optlaseng.2020.106192_bib0138) 2008; 281
Su (10.1016/j.optlaseng.2020.106192_bib0099) 2010; 48
Rao (10.1016/j.optlaseng.2020.106192_bib0090) 2016; 24
Takeda (10.1016/j.optlaseng.2020.106192_bib0016) 1982; 72
Li (10.1016/j.optlaseng.2020.106192_bib0143) 2013
Li (10.1016/j.optlaseng.2020.106192_bib0059) 2014; 22
High-resolution (10.1016/j.optlaseng.2020.106192_bib0021) 2006; 45
Yau (10.1016/j.optlaseng.2020.106192_bib0134) 2009; 48
Hu (10.1016/j.optlaseng.2020.106192_bib0058) 2017; 28
Howard (10.1016/j.optlaseng.2020.106192_bib0046) 2004
10.1016/j.optlaseng.2020.106192_bib0087
Zhang (10.1016/j.optlaseng.2020.106192_bib0103) 2007; 46
Cui (10.1016/j.optlaseng.2020.106192_bib0013) 2010
10.1016/j.optlaseng.2020.106192_bib0002
Scheffer (10.1016/j.optlaseng.2020.106192_bib0068) 1984; 45
Li (10.1016/j.optlaseng.2020.106192_bib0033) 2018; 57
Kreis (10.1016/j.optlaseng.2020.106192_bib0011) 1996; 2
Li (10.1016/j.optlaseng.2020.106192_bib0043) 2016; 85
Jia (10.1016/j.optlaseng.2020.106192_bib0105) 2007; 46
10.1016/j.optlaseng.2020.106192_bib0096
Li (10.1016/j.optlaseng.2020.106192_bib0064) 2017; 96
Dhond (10.1016/j.optlaseng.2020.106192_bib0094) 1989; 19
Servin (10.1016/j.optlaseng.2020.106192_bib0107) 2009; 17
Chen (10.1016/j.optlaseng.2020.106192_bib0079) 2013
10.1016/j.optlaseng.2020.106192_bib0133
Huang (10.1016/j.optlaseng.2020.106192_bib0104) 2005; 44
Huang (10.1016/j.optlaseng.2020.106192_bib0101) 2002; 41
Zhang (10.1016/j.optlaseng.2020.106192_bib0126) 2007; 46
Abdel-Aziz (10.1016/j.optlaseng.2020.106192_bib0110) 2015; 81
10.1016/j.optlaseng.2020.106192_bib0017
Yu (10.1016/j.optlaseng.2020.106192_bib0075) 2014
Huang (10.1016/j.optlaseng.2020.106192_bib0022) 2006; 45
Li (10.1016/j.optlaseng.2020.106192_bib0106) 1990; 29
Zuo (10.1016/j.optlaseng.2020.106192_bib0036) 2012; 20
Van der Jeught (10.1016/j.optlaseng.2020.106192_bib0076) 2015; 54
Guo (10.1016/j.optlaseng.2020.106192_bib0095) 2005; 44
Pawley (10.1016/j.optlaseng.2020.106192_bib0012) 2010
Wang (10.1016/j.optlaseng.2020.106192_bib0078) 2006; 261
Li (10.1016/j.optlaseng.2020.106192_bib0057) 2015; 23
Zuo (10.1016/j.optlaseng.2020.106192_bib0127) 2013; 51
Mittal (10.1016/j.optlaseng.2020.106192_bib0121) 2015; 47
Zhang (10.1016/j.optlaseng.2020.106192_bib0030) 2010; 35
Wang (10.1016/j.optlaseng.2020.106192_bib0082) 2017; 25
10.1016/j.optlaseng.2020.106192_bib0140
10.1016/j.optlaseng.2020.106192_bib0142
10.1016/j.optlaseng.2020.106192_bib0141
Franca (10.1016/j.optlaseng.2020.106192_bib0014) 2005; 1
Kowarschik (10.1016/j.optlaseng.2020.106192_bib0023) 2000; 39
Wang (10.1016/j.optlaseng.2020.106192_bib0114) 2010; 48
Gardner (10.1016/j.optlaseng.2020.106192_bib0047) 2001
Chen (10.1016/j.optlaseng.2020.106192_bib0001) 2000; 39
Long (10.1016/j.optlaseng.2020.106192_bib0040) 2016; 63
Zhang (10.1016/j.optlaseng.2020.106192_bib0032) 2017; 25
Proll (10.1016/j.optlaseng.2020.106192_bib0071) 2000; 39
Huang (10.1016/j.optlaseng.2020.106192_bib0115) 2010; 49
Huiyang (10.1016/j.optlaseng.2020.106192_bib0088) 2013
Liu (10.1016/j.optlaseng.2020.106192_bib0113) 2003; 216
Wang (10.1016/j.optlaseng.2020.106192_bib0020) 2009; 48
Li (10.1016/j.optlaseng.2020.106192_bib0085) 2013; 51
Chen (10.1016/j.optlaseng.2020.106192_bib0092) 2014; 57
Derpanis (10.1016/j.optlaseng.2020.106192_bib0006) 2004
Creath (10.1016/j.optlaseng.2020.106192_bib0008) 1988; 26
Hu (10.1016/j.optlaseng.2020.106192_bib0025) 2017; 28
Sun (10.1016/j.optlaseng.2020.106192_bib0026) 2015; 66
Hu (10.1016/j.optlaseng.2020.106192_bib0073) 2018; 57
Hu (10.1016/j.optlaseng.2020.106192_bib0074) 2019; 30
Zhang (10.1016/j.optlaseng.2020.106192_bib0091) 2019; 7
Quan (10.1016/j.optlaseng.2020.106192_bib0077) 2002; 34
Feng (10.1016/j.optlaseng.2020.106192_bib0123) 2014; 329
Gorthi (10.1016/j.optlaseng.2020.106192_bib0004) 2010; 48
Zhang (10.1016/j.optlaseng.2020.106192_bib0116) 2011; 36
Tanaka (10.1016/j.optlaseng.2020.106192_bib0118) 2014
Feng (10.1016/j.optlaseng.2020.106192_bib0128) 2014; 59
Zuo (10.1016/j.optlaseng.2020.106192_bib0035) 2018; 102
Zhang (10.1016/j.optlaseng.2020.106192_bib0038) 2010; 48
Yao (10.1016/j.optlaseng.2020.106192_bib0084) 2016; 13
Srinivasan (10.1016/j.optlaseng.2020.106192_bib0100) 1984; 23
Steinchen (10.1016/j.optlaseng.2020.106192_bib0009) 2003; 93
Zuo (10.1016/j.optlaseng.2020.106192_bib0109) 2016; 85
Lazaros (10.1016/j.optlaseng.2020.106192_bib0005) 2008; 2
Feng (10.1016/j.optlaseng.2020.106192_bib0129) 2013; 52
Zhang (10.1016/j.optlaseng.2020.106192_bib0124) 2007; 46
Jones (10.1016/j.optlaseng.2020.106192_bib0010) 1989; 6
References_xml – volume: 11
  year: 2013
  ident: bib0061
  article-title: Real-time three-dimensional infrared imaging using fringe projection profilometry
  publication-title: Chin Opt Lett
– volume: 63
  start-page: 1695
  year: 2016
  end-page: 1705
  ident: bib0040
  article-title: Recovery of absolute phases for the fringe patterns of three selected wavelengths with improved anti-error capability
  publication-title: J Mod Opt
– volume: 36
  start-page: 3372
  year: 1997
  ident: bib0049
  article-title: Three-dimensional topometry with stereo microscopes
  publication-title: Opt Eng
– volume: 122
  start-page: 1
  year: 2019
  end-page: 7
  ident: bib0139
  article-title: Microscopic 3D measurement of shiny surfaces based on a multi-frequency phase-shifting scheme
  publication-title: Opt Lasers Eng
– volume: 46
  year: 2007
  ident: bib0124
  article-title: Phase error compensation for a 3-D shape measurement system based on the phase-shifting method
  publication-title: Opt Eng
– start-page: 92972
  year: 2014
  ident: bib0075
– volume: 2
  start-page: 435
  year: 2008
  end-page: 462
  ident: bib0005
  article-title: Review of stereo vision algorithms: from software to hardware
  publication-title: Int J Optomechatronics
– volume: 102
  start-page: 70
  year: 2018
  end-page: 91
  ident: bib0035
  article-title: Micro Fourier Transform Profilometry (μ FTP): 3D shape measurement at 10,000 frames per second
  publication-title: Opt Lasers Eng
– volume: 24
  start-page: 20253
  year: 2016
  ident: bib0063
  article-title: Real-time 3-D shape measurement with composite phase-shifting fringes and multi-view system
  publication-title: Opt Express
– start-page: 87594
  year: 2013
  ident: bib0079
– start-page: 241
  year: 1989
  ident: bib0130
  article-title: An improved Fourier transform profilometry
– reference: DLP vs LCD vs LCoS Projector: Which should you buy? n.d.
– volume: 14
  start-page: 9120
  year: 2006
  end-page: 9129
  ident: bib0122
  article-title: GPU-assisted high-resolution, real-time 3-D shape measurement
  publication-title: Opt Express
– reference: DLP Overview | DLP Products | TI.com n.d.
– reference: Morrison G. DLP vs LCD vs LCoS: projector tech pros and cons. CNET n.d.
– volume: 2
  start-page: 323
  year: 1996
  ident: bib0011
  article-title: Holographic interferometry: principles and methods
  publication-title: Simul Exp Laser Metrol Proc Int Symp Laser Appl Precis Meas Held Balatonfüred Hungary
– volume: 30
  year: 2019
  ident: bib0074
  article-title: Dynamic 3D measurement of thermal deformation based on geometric-constrained stereo-matching with a stereo microscopic system
  publication-title: Meas Sci Technol
– reference: Haskamp K, Kästner M, Reithmeier E. Accurate calibration of a fringe projection system by considering telecentricity. In: Lehmann PH, Osten W, Gastinger K, editors., 2011, p. 80821B. doi:10.1117/12.888037.
– start-page: 498
  year: 2013
  end-page: 503
  ident: bib0088
  article-title: Calibration of camera with small FOV and DOF telecentric lens
  publication-title: IEEE
– start-page: 73
  year: 2001
  end-page: 92
  ident: bib0003
  article-title: Roving STARs: an integrated approach to on-line testing, diagnosis, and fault tolerance for FPGAs in adaptive computing systems
  publication-title: Proceeding third NASADoD workshop evolvable hardware EH-2001
– year: 2004
  ident: bib0046
  article-title: Unbiased stereology : three-dimensional measurement in microscopy
  publication-title: Garland Sci
– volume: 54
  start-page: 4953
  year: 2015
  ident: bib0076
  article-title: Real-time microscopic phase-shifting profilometry
  publication-title: Appl Opt
– volume: 51
  start-page: 953
  year: 2013
  end-page: 960
  ident: bib0127
  article-title: High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection
  publication-title: Opt Lasers Eng
– year: 2013
  ident: bib0143
– volume: 39
  year: 2000
  ident: bib0024
  article-title: Theory and arrangements of self-calibrating whole-body 3-D-measurement systems using fringe projection technique
  publication-title: Opt Eng
– volume: 39
  start-page: 6430
  year: 2000
  ident: bib0071
  article-title: Application of a liquid-crystal spatial light modulator for brightness adaptation in microscopic topometry
  publication-title: Appl Opt
– volume: 32
  start-page: 2438
  year: 2007
  ident: bib0117
  article-title: Three-dimensional shape measurement with an arbitrarily arranged fringe projection profilometry system
  publication-title: Opt Lett
– volume: 40
  start-page: 1653
  year: 2001
  ident: bib0067
  article-title: One-grating projection for absolute three-dimensional profiling
  publication-title: Opt Eng
– volume: 121
  start-page: 1290
  year: 2010
  end-page: 1294
  ident: bib0137
  article-title: Further study of the phase-recovering algorithm for saturated fringe patterns with a larger saturation coefficient in the projection grating phase-shifting profilometry
  publication-title: Opt - Int J Light Electron Opt
– volume: 45
  start-page: 1688
  year: 2006
  end-page: 1703
  ident: bib0070
  article-title: Polarimetric characterization of liquid-crystal-on-silicon panels
  publication-title: Appl Opt
– start-page: 70660
  year: 2008
  ident: bib0132
  article-title: 3-D shape measurement by use of a modified Fourier transform method
– volume: 57
  start-page: A181
  year: 2018
  ident: bib0039
  article-title: Error of image saturation in the structured-light method
  publication-title: Appl Opt
– volume: 48
  start-page: 191
  year: 2010
  end-page: 204
  ident: bib0099
  article-title: Dynamic 3-D shape measurement method: a review
  publication-title: Opt Lasers Eng
– volume: 66
  start-page: 158
  year: 2015
  end-page: 164
  ident: bib0026
  article-title: Improved intensity-optimized dithering technique for 3D shape measurement
  publication-title: Opt Lasers Eng
– reference: CAI Z, LIU X, PENG X, YIN Y, LI A, WU J, et al. Structured light field 3D imaging n.d.:11.
– year: 2014
  ident: bib0062
  article-title: Real-time 3D shape measurement system with full temporal resolution and spatial resolution
  publication-title: Three-Dimens Image Process Meas 3DIPM Appl
– volume: 81
  start-page: 103
  year: 2015
  end-page: 107
  ident: bib0110
  article-title: Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry
  publication-title: Photogramm Eng Remote Sens
– volume: 85
  start-page: 53
  year: 2016
  end-page: 64
  ident: bib0043
  article-title: Lens distortion elimination for improving measurement accuracy of fringe projection profilometry
  publication-title: Opt Lasers Eng
– volume: 47
  start-page: 57
  year: 2009
  end-page: 61
  ident: bib0131
  article-title: Surface profile measurement of moving objects by using an improved π phase-shifting Fourier transform profilometry
  publication-title: Opt Lasers Eng
– volume: 4985
  start-page: 14
  year: 2003
  end-page: 25
  ident: bib0069
  article-title: Emerging digital micromirror device (DMD) applications. MOEMS disp. imaging syst.
  publication-title: Int Soc Opt Photonics
– reference: Su X, Chen W. Fourier transform profilometry: a review. Opt Lasers Eng2001:22.
– volume: 23
  start-page: 6846
  year: 2015
  ident: bib0080
  article-title: Fringe projection 3D microscopy with the general imaging model
  publication-title: Opt Express
– volume: 35
  start-page: 934
  year: 2010
  ident: bib0030
  article-title: Flexible 3D shape measurement using projector defocusing: extended measurement range
  publication-title: Opt Lett
– volume: 29
  start-page: 64
  year: 1990
  end-page: 66
  ident: bib0097
  article-title: Two-dimensional Fourier transform profilometry for the automatic measurement of three-dimensional object shapes
  publication-title: Opt Eng
– reference: Bruning JH, Herriott DR, Gallagher JE, Rosenfeld DP, White AD, Brangaccio DJ. Digital wavefront measuring interferometer for testing optical surfaces and lenses n.d.:11.
– volume: 261
  start-page: 164
  year: 2006
  end-page: 171
  ident: bib0078
  article-title: 3D measurement of crater wear by phase shifting method
  publication-title: Wear
– volume: 36
  start-page: 1257
  year: 2011
  ident: bib0116
  article-title: Simple, flexible calibration of phase calculation-based three-dimensional imaging system
  publication-title: Opt Lett
– volume: 26
  start-page: 349
  year: 1988
  end-page: 393
  ident: bib0008
  article-title: Phase-measurement interferometry techniques
  publication-title: Prog Opt
– volume: 3
  start-page: 323
  year: 1987
  end-page: 344
  ident: bib0111
  article-title: A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses
  publication-title: IEEE J Robot Autom
– volume: 44
  year: 2005
  ident: bib0095
  article-title: Least-squares calibration method for fringe projection profilometry
  publication-title: Opt Eng
– volume: 46
  year: 2007
  ident: bib0103
  article-title: High-speed three-dimensional shape measurement system using a modified two-plus-one phase-shifting algorithm
  publication-title: Opt Eng
– volume: 25
  start-page: 19408
  year: 2017
  ident: bib0082
  article-title: Improved performance of multi-view fringe projection 3D microscopy
  publication-title: Opt Express
– volume: 54
  start-page: 170
  year: 2014
  end-page: 174
  ident: bib0135
  article-title: Rapid in-situ 3D measurement of shiny object based on fast and high dynamic range digital fringe projector
  publication-title: Opt Lasers Eng
– volume: 13
  start-page: 147
  year: 2005
  end-page: 150
  ident: bib0072
  article-title: Full-field micro surface profilometry using digital fringe projection with spatial encoding principle
  publication-title: J Phys Conf Ser
– reference: (accessed August 8, 2019).
– volume: 17
  start-page: 21867
  year: 2009
  ident: bib0107
  article-title: The general theory of phase shifting algorithms
  publication-title: Opt Express
– volume: 54
  start-page: 6865
  year: 2015
  ident: bib0120
  article-title: Graphics processing unit–assisted real-time three-dimensional measurement using speckle-embedded fringe
  publication-title: Appl Opt
– year: 2001
  ident: bib0047
  article-title: Microsensors, mems and smart devices
– volume: 38
  start-page: 1389
  year: 2013
  end-page: 1391
  ident: bib0093
  article-title: Multiview phase shifting: a full-resolution and high-speed 3D measurement framework for arbitrary shape dynamic objects
  publication-title: Opt Lett
– volume: 19
  start-page: 1489
  year: 1989
  end-page: 1510
  ident: bib0094
  article-title: Structure from stereo-a review
  publication-title: IEEE Trans Syst Man Cybern
– volume: 54
  start-page: 10055
  year: 2015
  ident: bib0042
  article-title: Distortion correction for microscopic fringe projection system with Scheimpflug telecentric lens
  publication-title: Appl Opt
– volume: 28
  year: 2017
  ident: bib0058
  article-title: Absolute three-dimensional micro surface profile measurement based on a greenough-type stereomicroscope
  publication-title: Meas Sci Technol
– volume: 87
  start-page: 18
  year: 2016
  end-page: 31
  ident: bib0034
  article-title: Real-time structured light profilometry: a review
  publication-title: Opt Lasers Eng
– volume: 38
  year: 1999
  ident: bib0125
  article-title: Phase unwrapping by lookup table method: application to phase map with singular points
  publication-title: Opt Eng
– reference: (accessed January 31, 2020).
– volume: 57
  start-page: 772
  year: 2018
  ident: bib0073
  article-title: Dynamic microscopic 3D shape measurement based on marker-embedded Fourier transform profilometry
  publication-title: Appl Opt
– volume: 51
  start-page: 861
  year: 2012
  end-page: 872
  ident: bib0029
  article-title: Comparison of the squared binary, sinusoidal pulse width modulation, and optimal pulse width modulation methods for three-dimensional shape measurement with projector defocusing
  publication-title: Appl Opt
– volume: 189
  start-page: 21
  year: 2001
  end-page: 29
  ident: bib0050
  article-title: Shape measurement of small objects using LCD fringe projection with phase shifting
  publication-title: Opt Commun
– volume: 26
  start-page: 2810
  year: 1987
  end-page: 2816
  ident: bib0066
  article-title: Step height measurement using two-wavelength phase-shifting interferometry
  publication-title: Appl Opt
– volume: 48
  start-page: 1052
  year: 2009
  end-page: 1061
  ident: bib0020
  article-title: Three-dimensional shape measurement with a fast and accurate approach
  publication-title: Appl Opt
– start-page: 1173
  year: 2010
  end-page: 1180
  ident: bib0013
  article-title: 3D shape scanning with a time-of-flight camera
  publication-title: Comput Vis Pattern Recognit CVPR 2010 IEEE Conf On, IEEE
– volume: 22
  start-page: 31826
  year: 2014
  ident: bib0059
  article-title: Telecentric 3D profilometry based on phase-shifting fringe projection
  publication-title: Opt Express
– volume: 46
  year: 2007
  ident: bib0105
  article-title: Two-step triangular-pattern phase-shifting method for three-dimensional object-shape measurement
  publication-title: Opt Eng
– year: 2004
  ident: bib0006
  article-title: The harris corner detector
  publication-title: York Univ
– volume: 20
  start-page: 19493
  year: 2012
  ident: bib0036
  article-title: High-speed three-dimensional profilometry for multiple objects with complex shapes
  publication-title: Opt Express
– volume: 124
  start-page: 5052
  year: 2013
  end-page: 5056
  ident: bib0052
  article-title: Fringe projection based quantitative 3D microscopy
  publication-title: Opt - Int J Light Electron Opt
– volume: 54
  start-page: 10541
  year: 2015
  end-page: 10551
  ident: bib0037
  article-title: Theoretical considerations on aperiodic sinusoidal fringes in comparison to phase-shifted sinusoidal fringes for high-speed three-dimensional shape measurement
  publication-title: Appl Opt
– volume: 26
  start-page: 2504
  year: 1987
  end-page: 2506
  ident: bib0102
  article-title: Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm
  publication-title: Appl Opt
– year: 2015
  ident: bib0119
  article-title: Efficient FFT mapping on GPU for radar processing application: modeling and implementation
  publication-title: ArXiv150508067 Cs
– volume: 33
  start-page: 12
  year: 1994
  ident: bib0048
  article-title: Microshape and rough-surface analysis by fringe projection
  publication-title: Appl Opt
– volume: 48
  start-page: 1132
  year: 2010
  end-page: 1139
  ident: bib0060
  article-title: Accurate 3D measurement system and calibration for speckle projection method
  publication-title: Opt Lasers Eng
– volume: 96
  start-page: 117
  year: 2017
  end-page: 123
  ident: bib0064
  article-title: Microscopic structured light 3D profilometry: binary defocusing technique vs. sinusoidal fringe projection
  publication-title: Opt Lasers Eng
– reference: Raab S. Three dimensional coordinate measuring apparatus. US5402582A, 1995.
– volume: 45
  year: 2006
  ident: bib0021
  article-title: real-time three-dimensional shape measurement
  publication-title: Opt Eng
– volume: 25
  start-page: 20381
  year: 2017
  ident: bib0032
  article-title: Robust and efficient multi-frequency temporal phase unwrapping: optimal fringe frequency and pattern sequence selection
  publication-title: Opt Express
– reference: Tsai RY.An efficient and accurate camera calibration technique for 3D machine vision. Proc IEEE Conf on Comput Vis Pattern Recognit1986:364–74.
– volume: 216
  start-page: 65
  year: 2003
  end-page: 80
  ident: bib0113
  article-title: Calibration-based phase-shifting projected fringe profilometry for accurate absolute 3D surface profile measurement
  publication-title: Opt Commun
– volume: 7
  start-page: 54682
  year: 2019
  end-page: 54692
  ident: bib0091
  article-title: High-precision measurement of binocular telecentric vision system with novel calibration and matching methods
  publication-title: IEEE Access
– volume: 28
  year: 2017
  ident: bib0025
  article-title: Real-time microscopic 3D shape measurement based on optimized pulse-width-modulation binary fringe projection
  publication-title: Meas Sci Technol
– volume: 47
  start-page: 1
  year: 2015
  end-page: 35
  ident: bib0121
  article-title: A survey of CPU-GPU heterogeneous computing techniques
  publication-title: ACM Comput Surv
– volume: 29
  start-page: 1439
  year: 1990
  end-page: 1445
  ident: bib0106
  article-title: Improved Fourier transform profilometry for the automatic measurement of three-dimensional object shapes
  publication-title: Opt Eng
– volume: 109
  start-page: 23
  year: 2018
  end-page: 59
  ident: bib0019
  article-title: Phase shifting algorithms for fringe projection profilometry: a review
  publication-title: Opt Lasers Eng
– reference: Electropages. DLP vs. LCD vs. LED vs. LCoS vs. laser: shedding light on projector technology n.d.
– reference: Polyga - 3D Scanning Technologies for Professionals. Polyga n.d.
– volume: 39
  start-page: 10
  year: 2000
  end-page: 23
  ident: bib0001
  article-title: Overview of 3-D shape measurement using optical methods
  publication-title: Opt Eng
– volume: 47
  year: 2008
  ident: bib0015
  article-title: General model for moiré contouring, part 1: theory
  publication-title: Opt Eng
– volume: 57
  start-page: 2352
  year: 2018
  ident: bib0033
  article-title: Optimal wavelength selection strategy in temporal phase unwrapping with projection distance minimization
  publication-title: Appl Opt
– volume: 22
  start-page: 1330
  year: 2000
  end-page: 1334
  ident: bib0055
  article-title: A flexible new technique for camera calibration
  publication-title: IEEE Trans Pattern Anal Mach Intell
– year: 2004
  ident: bib0083
  article-title: Multiple view geometry in computer vision
– volume: 281
  start-page: 3087
  year: 2008
  end-page: 3090
  ident: bib0138
  article-title: Phase deviation analysis and phase retrieval for partial intensity saturation in phase-shifting projected fringe profilometry
  publication-title: Opt Commun
– volume: 39
  year: 2000
  ident: bib0023
  article-title: Adaptive optical 3-D-measurement with structured light
  publication-title: Opt Eng
– volume: 23
  start-page: 3105
  year: 1984
  end-page: 3108
  ident: bib0100
  article-title: Automated phase-measuring profilometry of 3-D diffuse objects
  publication-title: Appl Opt
– volume: 85
  start-page: 84
  year: 2016
  end-page: 103
  ident: bib0109
  article-title: Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review
  publication-title: Opt Lasers Eng
– volume: 24
  start-page: 1222
  year: 2016
  end-page: 1237
  ident: bib0090
  article-title: Flexible calibration method for telecentric fringe projection profilometry systems
  publication-title: Opt Express
– volume: 45
  year: 2006
  ident: bib0022
  article-title: Novel method for structured light system calibration
  publication-title: Opt Eng
– volume: 51
  year: 2012
  ident: bib0041
  article-title: Real-time geometric lens distortion correction using a graphics processing unit
  publication-title: Opt Eng
– volume: 41
  start-page: 4503
  year: 2002
  end-page: 4509
  ident: bib0101
  article-title: Double three-step phase-shifting algorithm
  publication-title: Appl Opt
– volume: 38
  start-page: 6565
  year: 1999
  end-page: 6573
  ident: bib0031
  article-title: Three-dimensional vision based on a combination of gray-code and phase-shift light projection: analysis and compensation of the systematic errors
  publication-title: Appl Opt
– volume: 25
  start-page: 31492
  year: 2017
  end-page: 31508
  ident: bib0081
  article-title: Calibration method for projector-camera-based telecentric fringe projection profilometry system
  publication-title: Opt Express
– volume: 13
  start-page: 3110
  year: 2005
  end-page: 3116
  ident: bib0065
  article-title: High-speed optical measurement for the drumhead vibration
  publication-title: Opt Express
– volume: 59
  start-page: 56
  year: 2014
  end-page: 71
  ident: bib0128
  article-title: General solution for high dynamic range three-dimensional shape measurement using the fringe projection technique
  publication-title: Opt Lasers Eng
– volume: 13
  start-page: 82
  year: 2016
  ident: bib0084
  article-title: A flexible calibration approach for cameras with double-sided telecentric lenses
  publication-title: Int J Adv Robot Syst
– volume: 41
  start-page: 5896
  year: 2002
  ident: bib0051
  article-title: Microscopic phase-shifting profilometry based on digital micromirror device technology
  publication-title: Appl Opt
– volume: 96
  start-page: 1
  year: 2014
  end-page: 7
  ident: bib0098
  article-title: Comparative performance analysis of hamming, hanning and blackman window
  publication-title: Int J Comput Appl
– volume: 52
  year: 2013
  ident: bib0129
  article-title: Automatic identification and removal of outliers for high-speed fringe projection profilometry
  publication-title: Opt Eng
– volume: 43
  start-page: 2695
  year: 2004
  end-page: 2702
  ident: bib0018
  article-title: Windowed Fourier transform for fringe pattern analysis
  publication-title: Appl Opt
– volume: 48
  start-page: 149
  year: 2010
  end-page: 158
  ident: bib0038
  article-title: Recent progresses on real-time 3D shape measurement using digital fringe projection techniques
  publication-title: Opt Lasers Eng
– volume: 57
  start-page: 82
  year: 2014
  end-page: 92
  ident: bib0092
  article-title: Telecentric stereo micro-vision system: calibration method and experiments
  publication-title: Opt Lasers Eng
– volume: 48
  start-page: 218
  year: 2010
  end-page: 225
  ident: bib0114
  article-title: Some practical considerations in fringe projection profilometry
  publication-title: Opt Lasers Eng
– year: 2010
  ident: bib0012
  article-title: Handbook of biological confocal microscopy
– volume: 23
  start-page: 25795
  year: 2015
  ident: bib0057
  article-title: Flexible calibration method for microscopic structured light system using telecentric lens
  publication-title: Opt Express
– volume: 48
  year: 2009
  ident: bib0134
  article-title: High dynamic range scanning technique
  publication-title: Opt Eng
– volume: 121
  start-page: 23
  year: 2010
  end-page: 28
  ident: bib0136
  article-title: Study on a novel phase-recovering algorithm for partial intensity saturation in digital projection grating phase-shifting profilometry
  publication-title: Opt - Int J Light Electron Opt
– volume: 51
  start-page: 4477
  year: 2012
  ident: bib0028
  article-title: Optimized pulse width modulation pattern strategy for three-dimensional profilometry with projector defocusing
  publication-title: Appl Opt
– volume: 10827
  year: 2018
  ident: bib0089
  article-title: Calibration of telecentric cameras with distortion center estimation. Sixth int. conf. opt. photonic eng. IcOPEN 2018
  publication-title: Int Soc Opt Photonics
– reference: Precise Industrial 3D Metrology. GOM n.d.
– volume: 48
  start-page: 133
  year: 2010
  end-page: 140
  ident: bib0004
  article-title: Fringe projection techniques: whither we are?
  publication-title: Opt Lasers Eng
– volume: 6
  year: 1989
  ident: bib0010
  publication-title: Others. Holographic and speckle interferometry
– volume: 45
  start-page: 1021
  year: 1984
  end-page: 1023
  ident: bib0068
  article-title: A new, highly multiplexable liquid crystal display
  publication-title: Appl Phys Lett
– volume: 35
  start-page: 3682
  year: 2010
  end-page: 3684
  ident: bib0027
  article-title: Pulse-width modulation in defocused three-dimensional fringe projection
  publication-title: Opt Lett
– volume: 2
  year: 2004
  ident: bib0007
  article-title: PCA-SIFT: a more distinctive representation for local image descriptors
  publication-title: Comput Vis Pattern Recognit 2004 CVPR 2004 Proc 2004 IEEE Comput Soc Conf On
– volume: 1
  year: 2005
  ident: bib0014
  article-title: A 3D scanning system based on laser triangulation and variable field of view
  publication-title: Image Process 2005 ICIP 2005 IEEE Int Conf On
– volume: 51
  start-page: 538
  year: 2013
  end-page: 541
  ident: bib0085
  article-title: An accurate calibration method for a camera with telecentric lenses
  publication-title: Opt Lasers Eng
– start-page: 3129
  year: 2014
  end-page: 3134
  ident: bib0118
  article-title: A solution to pose ambiguity of visual markers using Moiré patterns
  publication-title: IEEE
– volume: 113
  start-page: 14
  year: 2019
  end-page: 22
  ident: bib0056
  article-title: A new microscopic telecentric stereo vision system - calibration, rectification, and three-dimensional reconstruction
  publication-title: Opt Lasers Eng
– volume: 329
  start-page: 44
  year: 2014
  end-page: 56
  ident: bib0123
  article-title: High-speed real-time 3-D coordinates measurement based on fringe projection profilometry considering camera lens distortion
  publication-title: Opt Commun
– volume: 42
  start-page: 1773
  year: 2003
  ident: bib0053
  article-title: Microscopic three-dimensional topometry with ferroelectric liquid-crystal-on-silicon displays
  publication-title: Appl Opt
– volume: 44
  year: 2005
  ident: bib0104
  article-title: Trapezoidal phase-shifting method for three-dimensional shape measurement
  publication-title: Opt Eng
– volume: 49
  start-page: 1539
  year: 2010
  ident: bib0115
  article-title: Least-squares calibration method for fringe projection profilometry considering camera lens distortion
  publication-title: Appl Opt
– volume: 131
  start-page: 724
  year: 2017
  end-page: 732
  ident: bib0086
  article-title: An accurate calibration method for non-overlapping cameras with double-sided telecentric lenses
  publication-title: Opt - Int J Light Electron Opt
– volume: 46
  start-page: 36
  year: 2007
  end-page: 43
  ident: bib0126
  article-title: Generic nonsinusoidal phase error correction for three-dimensional shape measurement using a digital video projector
  publication-title: Appl Opt
– reference: (accessed November 24, 2019).
– volume: 34
  start-page: 547
  year: 2002
  end-page: 552
  ident: bib0077
  article-title: Microscopic surface contouring by fringe projection method
  publication-title: Opt Laser Technol
– volume: 8
  start-page: 822
  year: 1991
  end-page: 827
  ident: bib0108
  article-title: Generalized phase-shifting interferometry
  publication-title: JOSA A
– volume: 93
  year: 2003
  ident: bib0009
  publication-title: Digital shearography: theory and application of digital speckle pattern shearing interferometry
– volume: 72
  start-page: 156
  year: 1982
  ident: bib0016
  article-title: Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry
  publication-title: J Opt Soc Am
– start-page: 87594
  year: 2013
  ident: 10.1016/j.optlaseng.2020.106192_bib0079
– volume: 33
  start-page: 12
  year: 1994
  ident: 10.1016/j.optlaseng.2020.106192_bib0048
  article-title: Microshape and rough-surface analysis by fringe projection
  publication-title: Appl Opt
  doi: 10.1364/AO.33.007477
– volume: 124
  start-page: 5052
  year: 2013
  ident: 10.1016/j.optlaseng.2020.106192_bib0052
  article-title: Fringe projection based quantitative 3D microscopy
  publication-title: Opt - Int J Light Electron Opt
  doi: 10.1016/j.ijleo.2013.03.070
– year: 2013
  ident: 10.1016/j.optlaseng.2020.106192_bib0143
– volume: 35
  start-page: 934
  year: 2010
  ident: 10.1016/j.optlaseng.2020.106192_bib0030
  article-title: Flexible 3D shape measurement using projector defocusing: extended measurement range
  publication-title: Opt Lett
  doi: 10.1364/OL.35.000934
– ident: 10.1016/j.optlaseng.2020.106192_bib0002
– volume: 41
  start-page: 4503
  year: 2002
  ident: 10.1016/j.optlaseng.2020.106192_bib0101
  article-title: Double three-step phase-shifting algorithm
  publication-title: Appl Opt
  doi: 10.1364/AO.41.004503
– ident: 10.1016/j.optlaseng.2020.106192_bib0045
– volume: 25
  start-page: 19408
  year: 2017
  ident: 10.1016/j.optlaseng.2020.106192_bib0082
  article-title: Improved performance of multi-view fringe projection 3D microscopy
  publication-title: Opt Express
  doi: 10.1364/OE.25.019408
– volume: 47
  year: 2008
  ident: 10.1016/j.optlaseng.2020.106192_bib0015
  article-title: General model for moiré contouring, part 1: theory
  publication-title: Opt Eng
– volume: 3
  start-page: 323
  year: 1987
  ident: 10.1016/j.optlaseng.2020.106192_bib0111
  article-title: A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses
  publication-title: IEEE J Robot Autom
  doi: 10.1109/JRA.1987.1087109
– volume: 329
  start-page: 44
  year: 2014
  ident: 10.1016/j.optlaseng.2020.106192_bib0123
  article-title: High-speed real-time 3-D coordinates measurement based on fringe projection profilometry considering camera lens distortion
  publication-title: Opt Commun
  doi: 10.1016/j.optcom.2014.04.067
– ident: 10.1016/j.optlaseng.2020.106192_bib0054
– volume: 57
  start-page: A181
  year: 2018
  ident: 10.1016/j.optlaseng.2020.106192_bib0039
  article-title: Error of image saturation in the structured-light method
  publication-title: Appl Opt
  doi: 10.1364/AO.57.00A181
– ident: 10.1016/j.optlaseng.2020.106192_bib0140
– volume: 45
  year: 2006
  ident: 10.1016/j.optlaseng.2020.106192_bib0021
  article-title: real-time three-dimensional shape measurement
  publication-title: Opt Eng
– volume: 87
  start-page: 18
  year: 2016
  ident: 10.1016/j.optlaseng.2020.106192_bib0034
  article-title: Real-time structured light profilometry: a review
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2016.01.011
– volume: 7
  start-page: 54682
  year: 2019
  ident: 10.1016/j.optlaseng.2020.106192_bib0091
  article-title: High-precision measurement of binocular telecentric vision system with novel calibration and matching methods
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2913181
– volume: 216
  start-page: 65
  year: 2003
  ident: 10.1016/j.optlaseng.2020.106192_bib0113
  article-title: Calibration-based phase-shifting projected fringe profilometry for accurate absolute 3D surface profile measurement
  publication-title: Opt Commun
  doi: 10.1016/S0030-4018(02)02290-3
– volume: 51
  start-page: 4477
  year: 2012
  ident: 10.1016/j.optlaseng.2020.106192_bib0028
  article-title: Optimized pulse width modulation pattern strategy for three-dimensional profilometry with projector defocusing
  publication-title: Appl Opt
  doi: 10.1364/AO.51.004477
– volume: 43
  start-page: 2695
  year: 2004
  ident: 10.1016/j.optlaseng.2020.106192_bib0018
  article-title: Windowed Fourier transform for fringe pattern analysis
  publication-title: Appl Opt
  doi: 10.1364/AO.43.002695
– volume: 96
  start-page: 1
  year: 2014
  ident: 10.1016/j.optlaseng.2020.106192_bib0098
  article-title: Comparative performance analysis of hamming, hanning and blackman window
  publication-title: Int J Comput Appl
– volume: 39
  year: 2000
  ident: 10.1016/j.optlaseng.2020.106192_bib0024
  article-title: Theory and arrangements of self-calibrating whole-body 3-D-measurement systems using fringe projection technique
  publication-title: Opt Eng
  doi: 10.1117/1.602347
– volume: 36
  start-page: 1257
  year: 2011
  ident: 10.1016/j.optlaseng.2020.106192_bib0116
  article-title: Simple, flexible calibration of phase calculation-based three-dimensional imaging system
  publication-title: Opt Lett
  doi: 10.1364/OL.36.001257
– volume: 34
  start-page: 547
  year: 2002
  ident: 10.1016/j.optlaseng.2020.106192_bib0077
  article-title: Microscopic surface contouring by fringe projection method
  publication-title: Opt Laser Technol
  doi: 10.1016/S0030-3992(02)00070-1
– volume: 13
  start-page: 82
  year: 2016
  ident: 10.1016/j.optlaseng.2020.106192_bib0084
  article-title: A flexible calibration approach for cameras with double-sided telecentric lenses
  publication-title: Int J Adv Robot Syst
  doi: 10.5772/63825
– volume: 44
  year: 2005
  ident: 10.1016/j.optlaseng.2020.106192_bib0104
  article-title: Trapezoidal phase-shifting method for three-dimensional shape measurement
  publication-title: Opt Eng
  doi: 10.1117/1.2147311
– volume: 20
  start-page: 19493
  year: 2012
  ident: 10.1016/j.optlaseng.2020.106192_bib0036
  article-title: High-speed three-dimensional profilometry for multiple objects with complex shapes
  publication-title: Opt Express
  doi: 10.1364/OE.20.019493
– volume: 26
  start-page: 2810
  year: 1987
  ident: 10.1016/j.optlaseng.2020.106192_bib0066
  article-title: Step height measurement using two-wavelength phase-shifting interferometry
  publication-title: Appl Opt
  doi: 10.1364/AO.26.002810
– volume: 6
  year: 1989
  ident: 10.1016/j.optlaseng.2020.106192_bib0010
– volume: 38
  start-page: 6565
  year: 1999
  ident: 10.1016/j.optlaseng.2020.106192_bib0031
  article-title: Three-dimensional vision based on a combination of gray-code and phase-shift light projection: analysis and compensation of the systematic errors
  publication-title: Appl Opt
  doi: 10.1364/AO.38.006565
– volume: 48
  start-page: 1052
  year: 2009
  ident: 10.1016/j.optlaseng.2020.106192_bib0020
  article-title: Three-dimensional shape measurement with a fast and accurate approach
  publication-title: Appl Opt
  doi: 10.1364/AO.48.001052
– ident: 10.1016/j.optlaseng.2020.106192_bib0142
– volume: 121
  start-page: 23
  year: 2010
  ident: 10.1016/j.optlaseng.2020.106192_bib0136
  article-title: Study on a novel phase-recovering algorithm for partial intensity saturation in digital projection grating phase-shifting profilometry
  publication-title: Opt - Int J Light Electron Opt
  doi: 10.1016/j.ijleo.2008.05.010
– volume: 22
  start-page: 1330
  year: 2000
  ident: 10.1016/j.optlaseng.2020.106192_bib0055
  article-title: A flexible new technique for camera calibration
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.888718
– volume: 39
  year: 2000
  ident: 10.1016/j.optlaseng.2020.106192_bib0023
  article-title: Adaptive optical 3-D-measurement with structured light
  publication-title: Opt Eng
– year: 2014
  ident: 10.1016/j.optlaseng.2020.106192_bib0062
  article-title: Real-time 3D shape measurement system with full temporal resolution and spatial resolution
  publication-title: Three-Dimens Image Process Meas 3DIPM Appl
– volume: 54
  start-page: 4953
  year: 2015
  ident: 10.1016/j.optlaseng.2020.106192_bib0076
  article-title: Real-time microscopic phase-shifting profilometry
  publication-title: Appl Opt
  doi: 10.1364/AO.54.004953
– start-page: 70660
  year: 2008
  ident: 10.1016/j.optlaseng.2020.106192_bib0132
– volume: 25
  start-page: 31492
  year: 2017
  ident: 10.1016/j.optlaseng.2020.106192_bib0081
  article-title: Calibration method for projector-camera-based telecentric fringe projection profilometry system
  publication-title: Opt Express
  doi: 10.1364/OE.25.031492
– volume: 23
  start-page: 6846
  year: 2015
  ident: 10.1016/j.optlaseng.2020.106192_bib0080
  article-title: Fringe projection 3D microscopy with the general imaging model
  publication-title: Opt Express
  doi: 10.1364/OE.23.006846
– volume: 29
  start-page: 64
  year: 1990
  ident: 10.1016/j.optlaseng.2020.106192_bib0097
  article-title: Two-dimensional Fourier transform profilometry for the automatic measurement of three-dimensional object shapes
  publication-title: Opt Eng
– volume: 47
  start-page: 57
  year: 2009
  ident: 10.1016/j.optlaseng.2020.106192_bib0131
  article-title: Surface profile measurement of moving objects by using an improved π phase-shifting Fourier transform profilometry
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2008.08.003
– volume: 57
  start-page: 772
  year: 2018
  ident: 10.1016/j.optlaseng.2020.106192_bib0073
  article-title: Dynamic microscopic 3D shape measurement based on marker-embedded Fourier transform profilometry
  publication-title: Appl Opt
  doi: 10.1364/AO.57.000772
– volume: 45
  start-page: 1021
  year: 1984
  ident: 10.1016/j.optlaseng.2020.106192_bib0068
  article-title: A new, highly multiplexable liquid crystal display
  publication-title: Appl Phys Lett
  doi: 10.1063/1.95048
– volume: 10827
  year: 2018
  ident: 10.1016/j.optlaseng.2020.106192_bib0089
  article-title: Calibration of telecentric cameras with distortion center estimation. Sixth int. conf. opt. photonic eng. IcOPEN 2018
  publication-title: Int Soc Opt Photonics
– volume: 38
  start-page: 1389
  year: 2013
  ident: 10.1016/j.optlaseng.2020.106192_bib0093
  article-title: Multiview phase shifting: a full-resolution and high-speed 3D measurement framework for arbitrary shape dynamic objects
  publication-title: Opt Lett
  doi: 10.1364/OL.38.001389
– volume: 39
  start-page: 10
  year: 2000
  ident: 10.1016/j.optlaseng.2020.106192_bib0001
  article-title: Overview of 3-D shape measurement using optical methods
  publication-title: Opt Eng
  doi: 10.1117/1.602438
– start-page: 73
  year: 2001
  ident: 10.1016/j.optlaseng.2020.106192_bib0003
  article-title: Roving STARs: an integrated approach to on-line testing, diagnosis, and fault tolerance for FPGAs in adaptive computing systems
– volume: 28
  year: 2017
  ident: 10.1016/j.optlaseng.2020.106192_bib0058
  article-title: Absolute three-dimensional micro surface profile measurement based on a greenough-type stereomicroscope
  publication-title: Meas Sci Technol
  doi: 10.1088/1361-6501/aa5a2d
– volume: 36
  start-page: 3372
  year: 1997
  ident: 10.1016/j.optlaseng.2020.106192_bib0049
  article-title: Three-dimensional topometry with stereo microscopes
  publication-title: Opt Eng
  doi: 10.1117/1.601576
– start-page: 498
  year: 2013
  ident: 10.1016/j.optlaseng.2020.106192_bib0088
  article-title: Calibration of camera with small FOV and DOF telecentric lens
  publication-title: IEEE
– volume: 85
  start-page: 53
  year: 2016
  ident: 10.1016/j.optlaseng.2020.106192_bib0043
  article-title: Lens distortion elimination for improving measurement accuracy of fringe projection profilometry
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2016.04.009
– year: 2004
  ident: 10.1016/j.optlaseng.2020.106192_bib0046
  article-title: Unbiased stereology : three-dimensional measurement in microscopy
  publication-title: Garland Sci
– volume: 26
  start-page: 2504
  year: 1987
  ident: 10.1016/j.optlaseng.2020.106192_bib0102
  article-title: Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm
  publication-title: Appl Opt
  doi: 10.1364/AO.26.002504
– year: 2001
  ident: 10.1016/j.optlaseng.2020.106192_bib0047
– volume: 23
  start-page: 25795
  year: 2015
  ident: 10.1016/j.optlaseng.2020.106192_bib0057
  article-title: Flexible calibration method for microscopic structured light system using telecentric lens
  publication-title: Opt Express
  doi: 10.1364/OE.23.025795
– volume: 48
  start-page: 1132
  year: 2010
  ident: 10.1016/j.optlaseng.2020.106192_bib0060
  article-title: Accurate 3D measurement system and calibration for speckle projection method
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2009.12.016
– volume: 48
  start-page: 218
  year: 2010
  ident: 10.1016/j.optlaseng.2020.106192_bib0114
  article-title: Some practical considerations in fringe projection profilometry
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2009.06.005
– volume: 46
  year: 2007
  ident: 10.1016/j.optlaseng.2020.106192_bib0103
  article-title: High-speed three-dimensional shape measurement system using a modified two-plus-one phase-shifting algorithm
  publication-title: Opt Eng
  doi: 10.1117/1.2802546
– volume: 109
  start-page: 23
  year: 2018
  ident: 10.1016/j.optlaseng.2020.106192_bib0019
  article-title: Phase shifting algorithms for fringe projection profilometry: a review
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2018.04.019
– volume: 23
  start-page: 3105
  year: 1984
  ident: 10.1016/j.optlaseng.2020.106192_bib0100
  article-title: Automated phase-measuring profilometry of 3-D diffuse objects
  publication-title: Appl Opt
  doi: 10.1364/AO.23.003105
– volume: 41
  start-page: 5896
  year: 2002
  ident: 10.1016/j.optlaseng.2020.106192_bib0051
  article-title: Microscopic phase-shifting profilometry based on digital micromirror device technology
  publication-title: Appl Opt
  doi: 10.1364/AO.41.005896
– volume: 54
  start-page: 10055
  year: 2015
  ident: 10.1016/j.optlaseng.2020.106192_bib0042
  article-title: Distortion correction for microscopic fringe projection system with Scheimpflug telecentric lens
  publication-title: Appl Opt
  doi: 10.1364/AO.54.010055
– volume: 19
  start-page: 1489
  year: 1989
  ident: 10.1016/j.optlaseng.2020.106192_bib0094
  article-title: Structure from stereo-a review
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/21.44067
– volume: 28
  year: 2017
  ident: 10.1016/j.optlaseng.2020.106192_bib0025
  article-title: Real-time microscopic 3D shape measurement based on optimized pulse-width-modulation binary fringe projection
  publication-title: Meas Sci Technol
  doi: 10.1088/1361-6501/aa7277
– volume: 51
  start-page: 861
  year: 2012
  ident: 10.1016/j.optlaseng.2020.106192_bib0029
  article-title: Comparison of the squared binary, sinusoidal pulse width modulation, and optimal pulse width modulation methods for three-dimensional shape measurement with projector defocusing
  publication-title: Appl Opt
  doi: 10.1364/AO.51.000861
– volume: 13
  start-page: 3110
  year: 2005
  ident: 10.1016/j.optlaseng.2020.106192_bib0065
  article-title: High-speed optical measurement for the drumhead vibration
  publication-title: Opt Express
  doi: 10.1364/OPEX.13.003110
– volume: 57
  start-page: 82
  year: 2014
  ident: 10.1016/j.optlaseng.2020.106192_bib0092
  article-title: Telecentric stereo micro-vision system: calibration method and experiments
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2014.01.021
– volume: 85
  start-page: 84
  year: 2016
  ident: 10.1016/j.optlaseng.2020.106192_bib0109
  article-title: Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2016.04.022
– volume: 45
  year: 2006
  ident: 10.1016/j.optlaseng.2020.106192_bib0022
  article-title: Novel method for structured light system calibration
  publication-title: Opt Eng
  doi: 10.1117/1.2336196
– volume: 66
  start-page: 158
  year: 2015
  ident: 10.1016/j.optlaseng.2020.106192_bib0026
  article-title: Improved intensity-optimized dithering technique for 3D shape measurement
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2014.09.008
– ident: 10.1016/j.optlaseng.2020.106192_bib0017
  doi: 10.1016/S0143-8166(01)00023-9
– volume: 93
  year: 2003
  ident: 10.1016/j.optlaseng.2020.106192_bib0009
  publication-title: Digital shearography: theory and application of digital speckle pattern shearing interferometry
– volume: 54
  start-page: 6865
  year: 2015
  ident: 10.1016/j.optlaseng.2020.106192_bib0120
  article-title: Graphics processing unit–assisted real-time three-dimensional measurement using speckle-embedded fringe
  publication-title: Appl Opt
  doi: 10.1364/AO.54.006865
– volume: 57
  start-page: 2352
  year: 2018
  ident: 10.1016/j.optlaseng.2020.106192_bib0033
  article-title: Optimal wavelength selection strategy in temporal phase unwrapping with projection distance minimization
  publication-title: Appl Opt
  doi: 10.1364/AO.57.002352
– volume: 96
  start-page: 117
  year: 2017
  ident: 10.1016/j.optlaseng.2020.106192_bib0064
  article-title: Microscopic structured light 3D profilometry: binary defocusing technique vs. sinusoidal fringe projection
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2016.06.009
– volume: 44
  year: 2005
  ident: 10.1016/j.optlaseng.2020.106192_bib0095
  article-title: Least-squares calibration method for fringe projection profilometry
  publication-title: Opt Eng
  doi: 10.1117/1.1871832
– volume: 51
  start-page: 953
  year: 2013
  ident: 10.1016/j.optlaseng.2020.106192_bib0127
  article-title: High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2013.02.012
– volume: 63
  start-page: 1695
  year: 2016
  ident: 10.1016/j.optlaseng.2020.106192_bib0040
  article-title: Recovery of absolute phases for the fringe patterns of three selected wavelengths with improved anti-error capability
  publication-title: J Mod Opt
  doi: 10.1080/09500340.2016.1168493
– year: 2015
  ident: 10.1016/j.optlaseng.2020.106192_bib0119
  article-title: Efficient FFT mapping on GPU for radar processing application: modeling and implementation
  publication-title: ArXiv150508067 Cs
– volume: 52
  year: 2013
  ident: 10.1016/j.optlaseng.2020.106192_bib0129
  article-title: Automatic identification and removal of outliers for high-speed fringe projection profilometry
  publication-title: Opt Eng
  doi: 10.1117/1.OE.52.1.013605
– year: 2004
  ident: 10.1016/j.optlaseng.2020.106192_bib0083
– volume: 48
  start-page: 191
  year: 2010
  ident: 10.1016/j.optlaseng.2020.106192_bib0099
  article-title: Dynamic 3-D shape measurement method: a review
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2009.03.012
– volume: 261
  start-page: 164
  year: 2006
  ident: 10.1016/j.optlaseng.2020.106192_bib0078
  article-title: 3D measurement of crater wear by phase shifting method
  publication-title: Wear
  doi: 10.1016/j.wear.2005.09.036
– volume: 32
  start-page: 2438
  year: 2007
  ident: 10.1016/j.optlaseng.2020.106192_bib0117
  article-title: Three-dimensional shape measurement with an arbitrarily arranged fringe projection profilometry system
  publication-title: Opt Lett
  doi: 10.1364/OL.32.002438
– volume: 2
  year: 2004
  ident: 10.1016/j.optlaseng.2020.106192_bib0007
  article-title: PCA-SIFT: a more distinctive representation for local image descriptors
  publication-title: Comput Vis Pattern Recognit 2004 CVPR 2004 Proc 2004 IEEE Comput Soc Conf On
– volume: 25
  start-page: 20381
  year: 2017
  ident: 10.1016/j.optlaseng.2020.106192_bib0032
  article-title: Robust and efficient multi-frequency temporal phase unwrapping: optimal fringe frequency and pattern sequence selection
  publication-title: Opt Express
  doi: 10.1364/OE.25.020381
– ident: 10.1016/j.optlaseng.2020.106192_bib0096
– start-page: 241
  year: 1989
  ident: 10.1016/j.optlaseng.2020.106192_bib0130
– volume: 48
  year: 2009
  ident: 10.1016/j.optlaseng.2020.106192_bib0134
  article-title: High dynamic range scanning technique
  publication-title: Opt Eng
  doi: 10.1117/1.3099720
– start-page: 3129
  year: 2014
  ident: 10.1016/j.optlaseng.2020.106192_bib0118
  article-title: A solution to pose ambiguity of visual markers using Moiré patterns
  publication-title: IEEE
– volume: 51
  start-page: 538
  year: 2013
  ident: 10.1016/j.optlaseng.2020.106192_bib0085
  article-title: An accurate calibration method for a camera with telecentric lenses
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2012.12.008
– volume: 40
  start-page: 1653
  year: 2001
  ident: 10.1016/j.optlaseng.2020.106192_bib0067
  article-title: One-grating projection for absolute three-dimensional profiling
  publication-title: Opt Eng
  doi: 10.1117/1.1385509
– volume: 121
  start-page: 1290
  year: 2010
  ident: 10.1016/j.optlaseng.2020.106192_bib0137
  article-title: Further study of the phase-recovering algorithm for saturated fringe patterns with a larger saturation coefficient in the projection grating phase-shifting profilometry
  publication-title: Opt - Int J Light Electron Opt
  doi: 10.1016/j.ijleo.2009.01.007
– volume: 13
  start-page: 147
  year: 2005
  ident: 10.1016/j.optlaseng.2020.106192_bib0072
  article-title: Full-field micro surface profilometry using digital fringe projection with spatial encoding principle
  publication-title: J Phys Conf Ser
  doi: 10.1088/1742-6596/13/1/034
– volume: 2
  start-page: 323
  year: 1996
  ident: 10.1016/j.optlaseng.2020.106192_bib0011
  article-title: Holographic interferometry: principles and methods
  publication-title: Simul Exp Laser Metrol Proc Int Symp Laser Appl Precis Meas Held Balatonfüred Hungary
– volume: 29
  start-page: 1439
  year: 1990
  ident: 10.1016/j.optlaseng.2020.106192_bib0106
  article-title: Improved Fourier transform profilometry for the automatic measurement of three-dimensional object shapes
  publication-title: Opt Eng
  doi: 10.1117/12.55746
– ident: 10.1016/j.optlaseng.2020.106192_bib0112
– start-page: 92972
  year: 2014
  ident: 10.1016/j.optlaseng.2020.106192_bib0075
– ident: 10.1016/j.optlaseng.2020.106192_bib0133
– volume: 24
  start-page: 1222
  year: 2016
  ident: 10.1016/j.optlaseng.2020.106192_bib0090
  article-title: Flexible calibration method for telecentric fringe projection profilometry systems
  publication-title: Opt Express
  doi: 10.1364/OE.24.001222
– year: 2004
  ident: 10.1016/j.optlaseng.2020.106192_bib0006
  article-title: The harris corner detector
  publication-title: York Univ
– year: 2010
  ident: 10.1016/j.optlaseng.2020.106192_bib0012
– ident: 10.1016/j.optlaseng.2020.106192_bib0044
– volume: 1
  year: 2005
  ident: 10.1016/j.optlaseng.2020.106192_bib0014
  article-title: A 3D scanning system based on laser triangulation and variable field of view
  publication-title: Image Process 2005 ICIP 2005 IEEE Int Conf On
– volume: 59
  start-page: 56
  year: 2014
  ident: 10.1016/j.optlaseng.2020.106192_bib0128
  article-title: General solution for high dynamic range three-dimensional shape measurement using the fringe projection technique
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2014.03.003
– volume: 30
  year: 2019
  ident: 10.1016/j.optlaseng.2020.106192_bib0074
  article-title: Dynamic 3D measurement of thermal deformation based on geometric-constrained stereo-matching with a stereo microscopic system
  publication-title: Meas Sci Technol
  doi: 10.1088/1361-6501/ab35a1
– volume: 38
  year: 1999
  ident: 10.1016/j.optlaseng.2020.106192_bib0125
  article-title: Phase unwrapping by lookup table method: application to phase map with singular points
  publication-title: Opt Eng
– volume: 113
  start-page: 14
  year: 2019
  ident: 10.1016/j.optlaseng.2020.106192_bib0056
  article-title: A new microscopic telecentric stereo vision system - calibration, rectification, and three-dimensional reconstruction
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2018.09.011
– volume: 48
  start-page: 133
  year: 2010
  ident: 10.1016/j.optlaseng.2020.106192_bib0004
  article-title: Fringe projection techniques: whither we are?
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2009.09.001
– volume: 131
  start-page: 724
  year: 2017
  ident: 10.1016/j.optlaseng.2020.106192_bib0086
  article-title: An accurate calibration method for non-overlapping cameras with double-sided telecentric lenses
  publication-title: Opt - Int J Light Electron Opt
  doi: 10.1016/j.ijleo.2016.11.156
– volume: 35
  start-page: 3682
  year: 2010
  ident: 10.1016/j.optlaseng.2020.106192_bib0027
  article-title: Pulse-width modulation in defocused three-dimensional fringe projection
  publication-title: Opt Lett
  doi: 10.1364/OL.35.003682
– volume: 189
  start-page: 21
  year: 2001
  ident: 10.1016/j.optlaseng.2020.106192_bib0050
  article-title: Shape measurement of small objects using LCD fringe projection with phase shifting
  publication-title: Opt Commun
  doi: 10.1016/S0030-4018(01)01038-0
– volume: 8
  start-page: 822
  year: 1991
  ident: 10.1016/j.optlaseng.2020.106192_bib0108
  article-title: Generalized phase-shifting interferometry
  publication-title: JOSA A
  doi: 10.1364/JOSAA.8.000822
– start-page: 1173
  year: 2010
  ident: 10.1016/j.optlaseng.2020.106192_bib0013
  article-title: 3D shape scanning with a time-of-flight camera
  publication-title: Comput Vis Pattern Recognit CVPR 2010 IEEE Conf On, IEEE
  doi: 10.1109/CVPR.2010.5540082
– volume: 54
  start-page: 10541
  year: 2015
  ident: 10.1016/j.optlaseng.2020.106192_bib0037
  article-title: Theoretical considerations on aperiodic sinusoidal fringes in comparison to phase-shifted sinusoidal fringes for high-speed three-dimensional shape measurement
  publication-title: Appl Opt
  doi: 10.1364/AO.54.010541
– volume: 46
  year: 2007
  ident: 10.1016/j.optlaseng.2020.106192_bib0105
  article-title: Two-step triangular-pattern phase-shifting method for three-dimensional object-shape measurement
  publication-title: Opt Eng
– volume: 47
  start-page: 1
  year: 2015
  ident: 10.1016/j.optlaseng.2020.106192_bib0121
  article-title: A survey of CPU-GPU heterogeneous computing techniques
  publication-title: ACM Comput Surv
  doi: 10.1145/2788396
– volume: 26
  start-page: 349
  year: 1988
  ident: 10.1016/j.optlaseng.2020.106192_bib0008
  article-title: Phase-measurement interferometry techniques
  publication-title: Prog Opt
  doi: 10.1016/S0079-6638(08)70178-1
– volume: 39
  start-page: 6430
  year: 2000
  ident: 10.1016/j.optlaseng.2020.106192_bib0071
  article-title: Application of a liquid-crystal spatial light modulator for brightness adaptation in microscopic topometry
  publication-title: Appl Opt
  doi: 10.1364/AO.39.006430
– volume: 81
  start-page: 103
  year: 2015
  ident: 10.1016/j.optlaseng.2020.106192_bib0110
  article-title: Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry
  publication-title: Photogramm Eng Remote Sens
  doi: 10.14358/PERS.81.2.103
– volume: 49
  start-page: 1539
  year: 2010
  ident: 10.1016/j.optlaseng.2020.106192_bib0115
  article-title: Least-squares calibration method for fringe projection profilometry considering camera lens distortion
  publication-title: Appl Opt
  doi: 10.1364/AO.49.001539
– volume: 48
  start-page: 149
  year: 2010
  ident: 10.1016/j.optlaseng.2020.106192_bib0038
  article-title: Recent progresses on real-time 3D shape measurement using digital fringe projection techniques
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2009.03.008
– ident: 10.1016/j.optlaseng.2020.106192_bib0141
– volume: 2
  start-page: 435
  year: 2008
  ident: 10.1016/j.optlaseng.2020.106192_bib0005
  article-title: Review of stereo vision algorithms: from software to hardware
  publication-title: Int J Optomechatronics
  doi: 10.1080/15599610802438680
– volume: 45
  start-page: 1688
  year: 2006
  ident: 10.1016/j.optlaseng.2020.106192_bib0070
  article-title: Polarimetric characterization of liquid-crystal-on-silicon panels
  publication-title: Appl Opt
  doi: 10.1364/AO.45.001688
– volume: 54
  start-page: 170
  year: 2014
  ident: 10.1016/j.optlaseng.2020.106192_bib0135
  article-title: Rapid in-situ 3D measurement of shiny object based on fast and high dynamic range digital fringe projector
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2013.08.002
– volume: 22
  start-page: 31826
  year: 2014
  ident: 10.1016/j.optlaseng.2020.106192_bib0059
  article-title: Telecentric 3D profilometry based on phase-shifting fringe projection
  publication-title: Opt Express
  doi: 10.1364/OE.22.031826
– volume: 11
  year: 2013
  ident: 10.1016/j.optlaseng.2020.106192_bib0061
  article-title: Real-time three-dimensional infrared imaging using fringe projection profilometry
  publication-title: Chin Opt Lett
– volume: 281
  start-page: 3087
  year: 2008
  ident: 10.1016/j.optlaseng.2020.106192_bib0138
  article-title: Phase deviation analysis and phase retrieval for partial intensity saturation in phase-shifting projected fringe profilometry
  publication-title: Opt Commun
  doi: 10.1016/j.optcom.2008.01.070
– ident: 10.1016/j.optlaseng.2020.106192_bib0087
  doi: 10.1117/12.888037
– volume: 17
  start-page: 21867
  year: 2009
  ident: 10.1016/j.optlaseng.2020.106192_bib0107
  article-title: The general theory of phase shifting algorithms
  publication-title: Opt Express
  doi: 10.1364/OE.17.021867
– volume: 4985
  start-page: 14
  year: 2003
  ident: 10.1016/j.optlaseng.2020.106192_bib0069
  article-title: Emerging digital micromirror device (DMD) applications. MOEMS disp. imaging syst.
  publication-title: Int Soc Opt Photonics
– volume: 51
  year: 2012
  ident: 10.1016/j.optlaseng.2020.106192_bib0041
  article-title: Real-time geometric lens distortion correction using a graphics processing unit
  publication-title: Opt Eng
  doi: 10.1117/1.OE.51.2.027002
– volume: 72
  start-page: 156
  year: 1982
  ident: 10.1016/j.optlaseng.2020.106192_bib0016
  article-title: Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry
  publication-title: J Opt Soc Am
  doi: 10.1364/JOSA.72.000156
– volume: 46
  year: 2007
  ident: 10.1016/j.optlaseng.2020.106192_bib0124
  article-title: Phase error compensation for a 3-D shape measurement system based on the phase-shifting method
  publication-title: Opt Eng
– volume: 46
  start-page: 36
  year: 2007
  ident: 10.1016/j.optlaseng.2020.106192_bib0126
  article-title: Generic nonsinusoidal phase error correction for three-dimensional shape measurement using a digital video projector
  publication-title: Appl Opt
  doi: 10.1364/AO.46.000036
– volume: 14
  start-page: 9120
  year: 2006
  ident: 10.1016/j.optlaseng.2020.106192_bib0122
  article-title: GPU-assisted high-resolution, real-time 3-D shape measurement
  publication-title: Opt Express
  doi: 10.1364/OE.14.009120
– volume: 122
  start-page: 1
  year: 2019
  ident: 10.1016/j.optlaseng.2020.106192_bib0139
  article-title: Microscopic 3D measurement of shiny surfaces based on a multi-frequency phase-shifting scheme
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2019.05.019
– volume: 102
  start-page: 70
  year: 2018
  ident: 10.1016/j.optlaseng.2020.106192_bib0035
  article-title: Micro Fourier Transform Profilometry (μ FTP): 3D shape measurement at 10,000 frames per second
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2017.10.013
– volume: 24
  start-page: 20253
  year: 2016
  ident: 10.1016/j.optlaseng.2020.106192_bib0063
  article-title: Real-time 3-D shape measurement with composite phase-shifting fringes and multi-view system
  publication-title: Opt Express
  doi: 10.1364/OE.24.020253
– volume: 42
  start-page: 1773
  year: 2003
  ident: 10.1016/j.optlaseng.2020.106192_bib0053
  article-title: Microscopic three-dimensional topometry with ferroelectric liquid-crystal-on-silicon displays
  publication-title: Appl Opt
  doi: 10.1364/AO.42.001773
SSID ssj0016411
Score 2.6387665
SecondaryResourceType review_article
Snippet •An overview of the state-of-the-art microscopic fringe projection profilometry (MFPP) works is provided.•Measurement principles, systems structures, and key...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106192
SubjectTerms Fringe projection
Microscopic
Optical metrology
Three-dimensional sensing
Title Microscopic fringe projection profilometry: A review
URI https://dx.doi.org/10.1016/j.optlaseng.2020.106192
Volume 135
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB1KRdCDaFWsHyUHr7FJdrLb9FaKpVrag1jsLWQ3u1LRtNR48OJvdzeblBaEHjyFLBkIj2Hm7e6bGYDbhDOdNThzeYTKRYHU5VRGruH6KIKOT5QpTh5P6HCKj7NwVoN-VQtjZJVl7LcxvYjW5Uq7RLO9nM_bRpZU3HppCqJ3zkWhOSIzXn73s5Z56N2Ab2cSInHN11sar8Uy1xxVZq96oxiYVWrvRP_IUBtZZ3AMRyVddHr2j06gJrMGHG40EWzAfiHiFJ-ngGOjrjN1JnPhqOLAzilPWjT6jh3PvfiQ-eq76_QcW7VyBtPB_XN_6JZTEVyBxMtd9DkLORepIJLTSHmJGZURpSqlAaYJikincCpRIeOCewkJiNI0BKmnOhr4gJxDPVtk8gKcVKmQoekYjx2UzE8izR5YEhIVKsFF1ARaIRGLsmW4mVzxHlfasLd4DWFsIIwthE3w1oZL2zVjt0m3gjrecoBYx_Zdxpf_Mb6CA_NmNSrXUM9XX_JGM42ctwpXasFe72E0nJjn6Oll9AvD19UJ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB1Ki6gH0apYP3PwGppkJ5umt1Isqf04tdBbyG52paJpqfHgv3c3m5QWhB68bhhYXpaZtztvZgCeExaoqMECm4UobeRIbUZFaGuuj9zruETq4uTJlEZzfF34ixr0q1oYLassfb_x6YW3LlfaJZrt9XLZ1rKkIuulKIi6OetC84buTuXXodEbjqLpNplA0TVjCZHY2mBP5rVa54qmiuxN3RU9vUpNWvSPILUTeAbncFYyRqtnNnUBNZE14XSnj2ATjgodJ_-6BJxogZ0uNVlySxZvdlb52KJ-gGUmdK8-Rb756Vo9yxSuXMF88DLrR3Y5GMHmSJzcRpcFPmM85UQwGkon0dMywlSm1MM0QR6qKE4FSgwYZ05CPCIVE0HqyI7C3iPXUM9WmbgBK5XSD1A3jccOisBNQkUggsQn0pec8bAFtEIi5mXXcD284iOu5GHv8RbCWEMYGwhb4GwN16ZxxmGTbgV1vHcGYuXeDxnf_sf4CY6j2WQcj4fT0R2c6C9GsnIP9XzzLR4U8cjZY3mwfgFvWNYX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microscopic+fringe+projection+profilometry%3A+A+review&rft.jtitle=Optics+and+lasers+in+engineering&rft.au=Hu%2C+Yan&rft.au=Chen%2C+Qian&rft.au=Feng%2C+Shijie&rft.au=Zuo%2C+Chao&rft.date=2020-12-01&rft.issn=0143-8166&rft.volume=135&rft.spage=106192&rft_id=info:doi/10.1016%2Fj.optlaseng.2020.106192&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_optlaseng_2020_106192
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-8166&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-8166&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-8166&client=summon