Biomass of a Psychrophilic Fungus as a Biocatalyst for Efficient Direct Esterification of Citronellol

A biomass-bound lipase from psychrophilic Chrysosporium pannorum A-1 is an efficient biocatalyst for direct esterification of β-citronellol and acetic acid in an organic solvent. The biomass is effectively produced by fungal submerged culture at 20 ℃, which results in lower energy consumption during...

Full description

Saved in:
Bibliographic Details
Published inBioenergy research Vol. 15; no. 1; pp. 399 - 411
Main Authors Kutyła, Mateusz, Trytek, Mariusz, Buczek, Katarzyna, Tomaszewska, Ewa, Muszyński, Siemowit
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2022
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A biomass-bound lipase from psychrophilic Chrysosporium pannorum A-1 is an efficient biocatalyst for direct esterification of β-citronellol and acetic acid in an organic solvent. The biomass is effectively produced by fungal submerged culture at 20 ℃, which results in lower energy consumption during the production of biocatalyst. Supplementation of the culture medium with calcium carbonate together with olive oil contributed to a significant increase in the active biomass of mycelium in one batch culture and increased the efficiency of the biocatalyst. Biomass-bound lipase showed high catalytic activity in a broad temperature range of 30–60 °C and stability up to 70 °C. A maximum molar conversion value of 98% was obtained at 30 °C in n -hexane using a 2:1 alcohol-to-acid molar ratio and 3% w/v of the biocatalyst within 24 h. The high equimolar concentration of the substrates (200 mM) did not have an adverse effect on mycelial biomass activity. Dry mycelium of C. pannorum is a promising biocatalyst for large-scale biosynthesis of citronellyl acetate, given its low-cost production, high activity at low temperatures, and reusability in a minimum of seven 24-h biocatalytic cycles.
ISSN:1939-1234
1939-1242
DOI:10.1007/s12155-021-10289-x