Wide-area scanner for high-speed atomic force microscopy
High-speed atomic force microscopy (HS-AFM) has recently been established. The dynamic processes and structural dynamics of protein molecules in action have been successfully visualized using HS-AFM. However, its maximum scan ranges in the X- and Y-directions have been limited to ~1 μm and ~4 μm, re...
Saved in:
Published in | Review of scientific instruments Vol. 84; no. 5; p. 053702 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.05.2013
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Summary: | High-speed atomic force microscopy (HS-AFM) has recently been established. The dynamic processes and structural dynamics of protein molecules in action have been successfully visualized using HS-AFM. However, its maximum scan ranges in the X- and Y-directions have been limited to ~1 μm and ~4 μm, respectively, making it infeasible to observe the dynamics of much larger samples, including live cells. Here, we develop a wide-area scanner with a maximum XY scan range of ~46 × 46 μm(2) by magnifying the displacements of stack piezoelectric actuators using a leverage mechanism. Mechanical vibrations produced by fast displacement of the X-scanner are suppressed by a combination of feed-forward inverse compensation and the use of triangular scan signals with rounded vertices. As a result, the scan speed in the X-direction reaches 6.3 mm/s even for a scan size as large as ~40 μm. The nonlinearity of the X- and Y-piezoelectric actuators' displacements that arises from their hysteresis is eliminated by polynomial-approximation-based open-loop control. The interference between the X- and Y-scanners is also eliminated by the same technique. The usefulness of this wide-area scanner is demonstrated by video imaging of dynamic processes in live bacterial and eukaryotic cells. |
---|---|
ISSN: | 1089-7623 |
DOI: | 10.1063/1.4803449 |