Spontaneous transformation and immortalization of human endothelial cells

A new cell line from the human umbilical vein has been established and maintained for more than 5 yr (180 generations; 900 population doublings). This strain, designated ECV304, is characterized by a cobblestone monolayer growth pattern, high proliferative potential without any specific growth facto...

Full description

Saved in:
Bibliographic Details
Published inIn vitro cellular & developmental biology Vol. 26; no. 3 Pt 1; p. 265
Main Authors Takahashi, K, Sawasaki, Y, Hata, J, Mukai, K, Goto, T
Format Journal Article
LanguageEnglish
Published United States 01.03.1990
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:A new cell line from the human umbilical vein has been established and maintained for more than 5 yr (180 generations; 900 population doublings). This strain, designated ECV304, is characterized by a cobblestone monolayer growth pattern, high proliferative potential without any specific growth factor requirement, and anchorage dependency with contact inhibition. Karyotype analysis of this cell line reveals it to be of human chromosomal constitution with a high trisomic karyotype (mode 80). Ultrastructurally, endothelium-specific Weibel-Palade bodies were identified. Although one of the endothelial cell markers, Factor VIII-related antigen (VIIIR:Ag) was negative in this cell line, immunocytochemical staining for the lectin Ulex europaeus I (UEA-I), and PHM5 (anti-human endothelium as well as glomerular epithelium monoclonal antibody) was positive, and angiotensin-converting enzyme (ACE) activity was also demonstrated. In addition, ECV304 displayed negativity for alkaline and acid phosphatase and for the epithelial marker keratin. All of these findings suggest that ECV304 cells originated from umbilical vein endothelial cells by spontaneous transformation. Ultrastructurally, no viruslike particles have been detected intracellularly. Nude mouse tumorigenicity and rabbit cornea tests were both positive. This is a report on a novel case of phenotypic alteration of normal venous endothelial cells of human origin in vitro, and generation of a transformant with indefinite life spans. This line may be useful in studies of some physiologically active factors available for medical use.
ISSN:0883-8364
DOI:10.1007/bf02624456