Air-like plasmonics with ultralow-refractive-index silica aerogels

The coupling of the surface plasmon near-field into the sensing medium is key to the sensitivity of surface plasmon-based sensing devices. A low-index dielectric is necessary for the sensing medium to support a highly-penetrating surface plasmon evanescent field that extends well into the dielectric...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 9; no. 1; p. 2265
Main Authors Kim, Yeonhong, Baek, Seunghwa, Gupta, Prince, Kim, Changwook, Chang, Kiseok, Ryu, Sung-Pil, Kang, Hansaem, Kim, Wook Sung, Myoung, Jaemin, Park, Wounjhang, Kim, Kyoungsik
Format Journal Article
LanguageEnglish
Published England Nature Publishing Group 19.02.2019
Nature Publishing Group UK
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The coupling of the surface plasmon near-field into the sensing medium is key to the sensitivity of surface plasmon-based sensing devices. A low-index dielectric is necessary for the sensing medium to support a highly-penetrating surface plasmon evanescent field that extends well into the dielectric medium. The air-like refractive index, n, of an aerogel substrate provides another dimension for ultralow-index plasmonic devices. In this paper, we experimentally observed an angular surface plasmon resonance dip at 74° with the ultralow-index aerogel substrate, as was expected from theory. We also demonstrated the comparatively high-sensitivity surface plasmon resonance wavelength, λ, while the change in Δλ/Δn with different substrates was studied in detail. A 740 nm-period metal grating was imprinted on aerogel (n = 1.08) and polydimethylsiloxane (PDMS; n = 1.4) substrates. The ultraviolet-visible-near-infrared spectra were observed in the reflection mode on the grating, resulting in sensitivities of 740.2 and 655.9 nm/RIU for the aerogel and PDMS substrates, respectively. Numerical simulations were performed to understand the near-field of the surface plasmon, which demonstrated resonances well correlated with the experimentally observed results. The near-field due to excitation of the surface plasmon polaritons is observed to be more confined and to penetrate deeper into the sensing medium when a low-index substrate is used.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-019-38859-2