Thermally Stimulated Luminescence in Powdered Soy Proteins

Heating powder isolated soy proteins (ISPs) in a N2 environment produced thermally stimulated luminescence (TSL), in 2 major temperature regions, 50 to 250°C (region R1) and 250 to 350°C (region R2). In soy protein 7S fraction, strong TSL was detected in both regions with glow peak maximum (Tm) at 1...

Full description

Saved in:
Bibliographic Details
Published inJournal of food science Vol. 79; no. 1; pp. C25 - C31
Main Authors Abdi, Dereje, Jahan, Muhammad S., Boatright, William L., Walters, Benjamin M., Lei, Qingxin
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.01.2014
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Heating powder isolated soy proteins (ISPs) in a N2 environment produced thermally stimulated luminescence (TSL), in 2 major temperature regions, 50 to 250°C (region R1) and 250 to 350°C (region R2). In soy protein 7S fraction, strong TSL was detected in both regions with glow peak maximum (Tm) at 150 ± 15°C and at 300 ± 10°C. Two additional satellite or shoulder peaks were detected from the ISP and 7S protein fraction within region R1 at Tm = 90°C and Tm = 210°C. The soy protein 11S fraction produced a broad, poorly defined TSL peak in the low‐temperature region. Electron paramagnetic resonance spectroscopy data from the control ISP sample, deuterium sulfide‐treated ISP, ISP stored in either N2 or O2, and defatted soy flour, indicated that the trapped radicals present in ISP is associated with the production of the primary TSL peak at 150 ± 15°C. Activation energies required to release the trapped charges (for luminescence to occur) are approximately 0.70, 0.78, 1.50, and 1.8 eV for TSL at Tm = 100, 150, 200, and 300°C, respectively. The reaction mechanism that leads to the release of the trapped charges for TSL to occur followed a mixed order kinetic, between 1.5 and 1.8. The frequency factor varied between 107/s and 1017/s. Practical Application Free radicals are capable of catalyzing oxidative degradation of food components, and powdered soy proteins typically contain from 10 to 100 times more metastable radicals than other protein sources. The research described in this paper provides novel information about the nature of these radicals that can be used to develop processes that can minimize the content of free radicals in foods containing soy proteins.
Bibliography:Natl. Research Initiative of the USDA Cooperative State Research, Education and Extension Service - No. 2009-35503-05190
ark:/67375/WNG-Q9TL4X2C-5
istex:99C6BA15A7EB04E7E2D7D589B58E851C7FE7453C
ArticleID:JFDS12325
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0022-1147
1750-3841
DOI:10.1111/1750-3841.12325