Copula density estimation by total variation penalized likelihood with linear equality constraints
A copula density is the joint probability density function (PDF) of a random vector with uniform marginals. An approach to bivariate copula density estimation is introduced that is based on maximum penalized likelihood estimation (MPLE) with a total variation (TV) penalty term. The marginal unity an...
Saved in:
Published in | Computational statistics & data analysis Vol. 56; no. 2; pp. 384 - 398 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.02.2012
Elsevier |
Series | Computational Statistics & Data Analysis |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A copula density is the joint probability density function (PDF) of a random vector with uniform marginals. An approach to bivariate copula density estimation is introduced that is based on maximum penalized likelihood estimation (MPLE) with a total variation (TV) penalty term. The marginal unity and symmetry constraints for copula density are enforced by linear equality constraints. The TV-MPLE subject to linear equality constraints is solved by an augmented Lagrangian and operator-splitting algorithm. It offers an order of magnitude improvement in computational efficiency over another TV-MPLE method without constraints solved by the log-barrier method for the second order cone program. A data-driven selection of the regularization parameter is through K-fold cross-validation (CV). Simulation and real data application show the effectiveness of the proposed approach. The MATLAB code implementing the methodology is available online. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0167-9473 1872-7352 |
DOI: | 10.1016/j.csda.2011.07.016 |