Intrinsic role of FoxO3a in the development of CD8+ T cell memory

CD8(+) T cells undergo rapid expansion during infection with intracellular pathogens, which is followed by swift and massive culling of primed CD8(+) T cells. The mechanisms that govern the massive contraction and maintenance of primed CD8(+) T cells are not clear. We show in this study that the tra...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of immunology (1950) Vol. 190; no. 3; pp. 1066 - 1075
Main Authors Tzelepis, Fanny, Joseph, Julie, Haddad, Elias K, Maclean, Susanne, Dudani, Renu, Agenes, Fabien, Peng, Stanford L, Sekaly, Rafick-Pierre, Sad, Subash
Format Journal Article
LanguageEnglish
Published United States 01.02.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:CD8(+) T cells undergo rapid expansion during infection with intracellular pathogens, which is followed by swift and massive culling of primed CD8(+) T cells. The mechanisms that govern the massive contraction and maintenance of primed CD8(+) T cells are not clear. We show in this study that the transcription factor, FoxO3a, does not influence Ag presentation and the consequent expansion of CD8(+) T cell response during Listeria monocytogenes infection, but plays a key role in the maintenance of memory CD8(+) T cells. The effector function of primed CD8(+) T cells as revealed by cytokine secretion and CD107a degranulation was not influenced by inactivation of FoxO3a. Interestingly, FoxO3a-deficient CD8(+) T cells displayed reduced expression of proapoptotic molecules BIM and PUMA during the various phases of response, and underwent reduced apoptosis in comparison with wild-type cells. A higher number of memory precursor effector cells and memory subsets was detectable in FoxO3a-deficient mice compared with wild-type mice. Furthermore, FoxO3a-deficient memory CD8(+) T cells upon transfer into normal or RAG1-deficient mice displayed enhanced survival. These results suggest that FoxO3a acts in a cell-intrinsic manner to regulate the survival of primed CD8(+) T cells.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.1200639