A class of Hilbert-type multiple integral inequalities with the kernel of generalized homogeneous function and its applications

Let x = ( x 1 , x 2 , … , x n ) , and let K ( u ( x ) , v ( y ) ) satisfy u ( r x ) = r u ( x ) , v ( r y ) = r v ( y ) , K ( r u , v ) = r λ λ 1 K ( u , r − λ 1 λ 2 v ) , and K ( u , r v ) = r λ λ 2 K ( r − λ 2 λ 1 u , v ) . In this paper, we obtain a necessary and sufficient condition and the best...

Full description

Saved in:
Bibliographic Details
Published inJournal of inequalities and applications Vol. 2020; no. 1; pp. 1 - 13
Main Authors Hong, Yong, Liao, Jianquan, Yang, Bicheng, Chen, Qiang
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 13.05.2020
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Let x = ( x 1 , x 2 , … , x n ) , and let K ( u ( x ) , v ( y ) ) satisfy u ( r x ) = r u ( x ) , v ( r y ) = r v ( y ) , K ( r u , v ) = r λ λ 1 K ( u , r − λ 1 λ 2 v ) , and K ( u , r v ) = r λ λ 2 K ( r − λ 2 λ 1 u , v ) . In this paper, we obtain a necessary and sufficient condition and the best constant factor for the Hilbert-type multiple integral inequality with kernel K ( u ( x ) , v ( y ) ) and discuss its applications in the theory of operators.
AbstractList Abstract Let x = ( x 1 , x 2 , … , x n ) $x=(x_{1},x_{2},\ldots,x_{n})$ , and let K ( u ( x ) , v ( y ) ) $K(u(x),v(y))$ satisfy u ( r x ) = r u ( x ) $u(rx)=ru(x)$ , v ( r y ) = r v ( y ) $v(ry)=rv(y)$ , K ( r u , v ) = r λ λ 1 K ( u , r − λ 1 λ 2 v ) $K(ru,v)=r^{\lambda\lambda_{1}}K(u, r^{-\frac{\lambda_{1}}{\lambda_{2}}}v)$ , and K ( u , r v ) = r λ λ 2 K ( r − λ 2 λ 1 u , v ) $K(u,rv)=r^{\lambda\lambda_{2}}K(r^{-\frac{\lambda_{2}}{\lambda_{1}}}u, v)$ . In this paper, we obtain a necessary and sufficient condition and the best constant factor for the Hilbert-type multiple integral inequality with kernel K ( u ( x ) , v ( y ) ) $K(u(x),v(y))$ and discuss its applications in the theory of operators.
Abstract Let $x=(x_{1},x_{2},\ldots,x_{n})$ x = ( x 1 , x 2 , … , x n ) , and let $K(u(x),v(y))$ K ( u ( x ) , v ( y ) ) satisfy $u(rx)=ru(x)$ u ( r x ) = r u ( x ) , $v(ry)=rv(y)$ v ( r y ) = r v ( y ) , $K(ru,v)=r^{\lambda\lambda_{1}}K(u, r^{-\frac{\lambda_{1}}{\lambda_{2}}}v)$ K ( r u , v ) = r λ λ 1 K ( u , r − λ 1 λ 2 v ) , and $K(u,rv)=r^{\lambda\lambda_{2}}K(r^{-\frac{\lambda_{2}}{\lambda_{1}}}u, v)$ K ( u , r v ) = r λ λ 2 K ( r − λ 2 λ 1 u , v ) . In this paper, we obtain a necessary and sufficient condition and the best constant factor for the Hilbert-type multiple integral inequality with kernel $K(u(x),v(y))$ K ( u ( x ) , v ( y ) ) and discuss its applications in the theory of operators.
Let x = ( x 1 , x 2 , … , x n ) , and let K ( u ( x ) , v ( y ) ) satisfy u ( r x ) = r u ( x ) , v ( r y ) = r v ( y ) , K ( r u , v ) = r λ λ 1 K ( u , r − λ 1 λ 2 v ) , and K ( u , r v ) = r λ λ 2 K ( r − λ 2 λ 1 u , v ) . In this paper, we obtain a necessary and sufficient condition and the best constant factor for the Hilbert-type multiple integral inequality with kernel K ( u ( x ) , v ( y ) ) and discuss its applications in the theory of operators.
Let x=(x1,x2,…,xn), and let K(u(x),v(y)) satisfy u(rx)=ru(x), v(ry)=rv(y), K(ru,v)=rλλ1K(u,r−λ1λ2v), and K(u,rv)=rλλ2K(r−λ2λ1u,v). In this paper, we obtain a necessary and sufficient condition and the best constant factor for the Hilbert-type multiple integral inequality with kernel K(u(x),v(y)) and discuss its applications in the theory of operators.
ArticleNumber 140
Author Hong, Yong
Chen, Qiang
Liao, Jianquan
Yang, Bicheng
Author_xml – sequence: 1
  givenname: Yong
  surname: Hong
  fullname: Hong, Yong
  organization: Department of Mathematics, Guangdong Baiyun University
– sequence: 2
  givenname: Jianquan
  orcidid: 0000-0002-5443-1266
  surname: Liao
  fullname: Liao, Jianquan
  email: lmath@163.com
  organization: Department of Mathematics, Guangdong University of Education
– sequence: 3
  givenname: Bicheng
  surname: Yang
  fullname: Yang, Bicheng
  organization: Department of Mathematics, Guangdong University of Education
– sequence: 4
  givenname: Qiang
  surname: Chen
  fullname: Chen, Qiang
  organization: Department of Computer Science, Guangdong University of Education
BookMark eNp9UU1vFSEUnZia2Fb_gCsS16N8PWCWTaO2SRM3NXFHGLjzHk8eTIGJqRv_ukzHqKsugMvJPedcOBfdWUwRuu4twe8JUeJDIUwI3GO6Lo5Jj1905wTToaecfjv7r37VXZRyxJgSpvh59-sK2WBKQWlCNz6MkGtfH2dApyVUPwdAPlbYZxNaAQ-LCb56KOiHrwdUD4C-Q44QVvoeIrQ-_xMcOqRTWu9pKWhaoq0-RWSiQ74WZOY5eGtWrLzuXk4mFHjz57zsvn76eH990999-Xx7fXXXW06H2ltlByf5tBMcBFDmrGyvBDYNyjjlRip3YlLEjVLZSeKdEUA4d0QaxU1D2WV3u-m6ZI56zv5k8qNOxusnIOW9Nrl6G0ATyTkThgmmgDdLRQzhchjNxEYhnWha7zatOaeHBUrVx7Tk2MbX7e8pa5tcHenWZXMqJcP015VgvYamt9B0C00_haZxI7GNVFpz3EP-J_0M6zd1C53B
CitedBy_id crossref_primary_10_1360_SSM_2021_0149
crossref_primary_10_1515_math_2022_0041
crossref_primary_10_1017_S0013091522000360
crossref_primary_10_1007_s13398_022_01238_0
crossref_primary_10_3934_math_2022050
crossref_primary_10_1186_s13660_021_02688_7
Cites_doi 10.1186/s13660-016-1020-5
10.1155/2009/192197
10.1155/2007/27962
10.1186/s13660-015-0861-7
10.1186/s13660-016-1026-z
10.1186/s13660-016-1075-3
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
M7S
P5Z
P62
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1186/s13660-020-02401-0
DatabaseName SpringerOpen
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest Central Korea
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
DatabaseTitleList
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1029-242X
EndPage 13
ExternalDocumentID oai_doaj_org_article_174436a3638e44f581a1479baf3b67d6
10_1186_s13660_020_02401_0
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61300204
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 11401113
GroupedDBID -A0
0R~
29K
2WC
4.4
40G
5GY
5VS
8FE
8FG
8R4
8R5
AAFWJ
AAJSJ
AAKKN
AAYZJ
ABDBF
ABFTD
ABJCF
ABPTK
ACACY
ACGFO
ACGFS
ACIPV
ACIWK
ADBBV
ADINQ
AENEX
AFGXO
AFKRA
AFNRJ
AFPKN
AHBXF
AHBYD
AHYZX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
D-I
DU5
EBS
ESX
GROUPED_DOAJ
HCIFZ
J9A
K6V
K7-
KQ8
L6V
M7S
M~E
OK1
P2P
P62
PIMPY
PROAC
PTHSS
Q2X
REM
RHU
RNS
RSV
SMT
SOJ
TUS
U2A
~8M
AAYXX
ABEEZ
ACULB
CITATION
EBLON
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
JQ2
KR7
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c429t-c8c9d74f564e6e23dc7401e3f98ad8db2756f81db78cf705a6e144d17a84adb73
IEDL.DBID 40G
ISSN 1029-242X
1025-5834
IngestDate Tue Oct 22 15:06:40 EDT 2024
Thu Oct 10 16:10:00 EDT 2024
Fri Aug 23 00:44:11 EDT 2024
Sat Dec 16 12:02:02 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Necessary and sufficient condition
Generalized homogeneous kernel
Hilbert-type multiple integral inequality
Operator norm
Bounded operator
The best constant factor
26D15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-c8c9d74f564e6e23dc7401e3f98ad8db2756f81db78cf705a6e144d17a84adb73
ORCID 0000-0002-5443-1266
OpenAccessLink http://link.springer.com/10.1186/s13660-020-02401-0
PQID 2402324077
PQPubID 237789
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_174436a3638e44f581a1479baf3b67d6
proquest_journals_2402324077
crossref_primary_10_1186_s13660_020_02401_0
springer_journals_10_1186_s13660_020_02401_0
PublicationCentury 2000
PublicationDate 2020-05-13
PublicationDateYYYYMMDD 2020-05-13
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-13
  day: 13
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Journal of inequalities and applications
PublicationTitleAbbrev J Inequal Appl
PublicationYear 2020
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References Hong (CR15) 2006; 2006
Zhong, Yang (CR10) 2007; 2007
Xin, Yang, Chen (CR11) 2016; 2016
Fichtigoloz (CR17) 1957
Yang (CR4) 2004; 1
Hong (CR1) 2014; 57
Perić, Vuković (CR3) 2009; 12
Yang, Chen (CR14) 2016; 2016
Hong, Wen (CR5) 2017; 37A
Kuang (CR12) 2004
Huang, Yang (CR16) 2009; 2009
Yang, Qiang (CR8) 2016; 2016
Rassias, Yang (CR6) 2016; 7
Yang, Chen (CR13) 2015; 2015
Chen, Shi, Yang (CR7) 2016; 2016
Yang (CR9) 2015; 18
He, Cao, Yang (CR2) 2015; 58
G.H. Fichtigoloz (2401_CR17) 1957
B.C. Yang (2401_CR9) 2015; 18
Q.L. Huang (2401_CR16) 2009; 2009
Y. Hong (2401_CR1) 2014; 57
B.C. Yang (2401_CR13) 2015; 2015
Q. Chen (2401_CR7) 2016; 2016
I. Perić (2401_CR3) 2009; 12
B.C. Yang (2401_CR4) 2004; 1
M.Th. Rassias (2401_CR6) 2016; 7
J.C. Kuang (2401_CR12) 2004
Y. Hong (2401_CR5) 2017; 37A
D.M. Xin (2401_CR11) 2016; 2016
B.C. Yang (2401_CR14) 2016; 2016
B. He (2401_CR2) 2015; 58
Y. Hong (2401_CR15) 2006; 2006
B.C. Yang (2401_CR8) 2016; 2016
W.Y. Zhong (2401_CR10) 2007; 2007
References_xml – volume: 58
  start-page: 661
  year: 2015
  end-page: 672
  ident: CR2
  article-title: A brand new multiple Hilbert-type integral inequality
  publication-title: Acta Math. Sin. Chin. Ser.
  contributor:
    fullname: Yang
– volume: 1
  start-page: 1
  issue: 1
  year: 2004
  end-page: 8
  ident: CR4
  article-title: On an extension of Hilbert’s integral inequality with some parameters
  publication-title: Aust. J. Math. Anal. Appl.
  contributor:
    fullname: Yang
– volume: 2016
  year: 2016
  ident: CR7
  article-title: A relation between two simple Hardy–Mulholland-type inequalities with parameters
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-016-1020-5
  contributor:
    fullname: Yang
– volume: 57
  start-page: 833
  year: 2014
  end-page: 840
  ident: CR1
  article-title: A Hilbert-type integral inequality with quasi-homogeneous kernel and several functions
  publication-title: Acta Math. Sin. Chin. Ser.
  contributor:
    fullname: Hong
– volume: 37A
  start-page: 329
  issue: 3
  year: 2017
  end-page: 336
  ident: CR5
  article-title: A necessary and sufficient condition of that Hilbert type series inequality with homogeneous kernel and the best constant factor
  publication-title: Chin. Ann. Math.
  contributor:
    fullname: Wen
– volume: 2009
  year: 2009
  ident: CR16
  article-title: On a multiple Hilbert-type integral operator and applications
  publication-title: J. Inequal. Appl.
  doi: 10.1155/2009/192197
  contributor:
    fullname: Yang
– volume: 2016
  year: 2016
  ident: CR14
  article-title: A new extension of Hardy–Hilbert’s inequality in the whole plane
  publication-title: J. Funct. Spaces
  contributor:
    fullname: Chen
– volume: 18
  start-page: 429
  year: 2015
  end-page: 441
  ident: CR9
  article-title: On a more accurate multidimensional Hilbert-type inequality with parameters
  publication-title: Math. Inequal. Appl.
  contributor:
    fullname: Yang
– volume: 2007
  year: 2007
  ident: CR10
  article-title: On multiple Hardy–Hilbert’s integral inequality with kernel
  publication-title: J. Inequal. Appl.
  doi: 10.1155/2007/27962
  contributor:
    fullname: Yang
– volume: 2015
  year: 2015
  ident: CR13
  article-title: On a Hardy–Hilbert-type inequality with parameters
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-015-0861-7
  contributor:
    fullname: Chen
– volume: 2006
  year: 2006
  ident: CR15
  article-title: On multiple Hardy–Hilbert integral inequalities with some parameters
  publication-title: J. Inequal. Appl.
  contributor:
    fullname: Hong
– year: 1957
  ident: CR17
  publication-title: A Course in Differential and Integral Calculus
  contributor:
    fullname: Fichtigoloz
– volume: 7
  start-page: 249
  issue: 1
  year: 2016
  end-page: 269
  ident: CR6
  article-title: On a Hardy–Hilbert-type inequality with a general homogeneous kernel
  publication-title: Int. J. Nonlinear Anal. Appl.
  contributor:
    fullname: Yang
– year: 2004
  ident: CR12
  publication-title: Applied Inequalities
  contributor:
    fullname: Kuang
– volume: 2016
  year: 2016
  ident: CR8
  article-title: On a more accurate Hardy–Mulholland-type inequality
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-016-1026-z
  contributor:
    fullname: Qiang
– volume: 2016
  year: 2016
  ident: CR11
  article-title: A discrete Hilbert-type inequality in the whole plane
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-016-1075-3
  contributor:
    fullname: Chen
– volume: 12
  start-page: 525
  year: 2009
  end-page: 536
  ident: CR3
  article-title: Hardy–Hilbert’s inequalities with a general homogeneous kernel
  publication-title: Math. Inequal. Appl.
  contributor:
    fullname: Vuković
– volume: 18
  start-page: 429
  year: 2015
  ident: 2401_CR9
  publication-title: Math. Inequal. Appl.
  contributor:
    fullname: B.C. Yang
– volume: 2015
  year: 2015
  ident: 2401_CR13
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-015-0861-7
  contributor:
    fullname: B.C. Yang
– volume: 7
  start-page: 249
  issue: 1
  year: 2016
  ident: 2401_CR6
  publication-title: Int. J. Nonlinear Anal. Appl.
  contributor:
    fullname: M.Th. Rassias
– volume: 1
  start-page: 1
  issue: 1
  year: 2004
  ident: 2401_CR4
  publication-title: Aust. J. Math. Anal. Appl.
  contributor:
    fullname: B.C. Yang
– volume: 58
  start-page: 661
  year: 2015
  ident: 2401_CR2
  publication-title: Acta Math. Sin. Chin. Ser.
  contributor:
    fullname: B. He
– volume: 2016
  year: 2016
  ident: 2401_CR14
  publication-title: J. Funct. Spaces
  contributor:
    fullname: B.C. Yang
– volume-title: A Course in Differential and Integral Calculus
  year: 1957
  ident: 2401_CR17
  contributor:
    fullname: G.H. Fichtigoloz
– volume: 2016
  year: 2016
  ident: 2401_CR8
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-016-1026-z
  contributor:
    fullname: B.C. Yang
– volume: 2006
  year: 2006
  ident: 2401_CR15
  publication-title: J. Inequal. Appl.
  contributor:
    fullname: Y. Hong
– volume-title: Applied Inequalities
  year: 2004
  ident: 2401_CR12
  contributor:
    fullname: J.C. Kuang
– volume: 2009
  year: 2009
  ident: 2401_CR16
  publication-title: J. Inequal. Appl.
  doi: 10.1155/2009/192197
  contributor:
    fullname: Q.L. Huang
– volume: 37A
  start-page: 329
  issue: 3
  year: 2017
  ident: 2401_CR5
  publication-title: Chin. Ann. Math.
  contributor:
    fullname: Y. Hong
– volume: 12
  start-page: 525
  year: 2009
  ident: 2401_CR3
  publication-title: Math. Inequal. Appl.
  contributor:
    fullname: I. Perić
– volume: 2016
  year: 2016
  ident: 2401_CR11
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-016-1075-3
  contributor:
    fullname: D.M. Xin
– volume: 2007
  year: 2007
  ident: 2401_CR10
  publication-title: J. Inequal. Appl.
  doi: 10.1155/2007/27962
  contributor:
    fullname: W.Y. Zhong
– volume: 57
  start-page: 833
  year: 2014
  ident: 2401_CR1
  publication-title: Acta Math. Sin. Chin. Ser.
  contributor:
    fullname: Y. Hong
– volume: 2016
  year: 2016
  ident: 2401_CR7
  publication-title: J. Inequal. Appl.
  doi: 10.1186/s13660-016-1020-5
  contributor:
    fullname: Q. Chen
SSID ssj0021384
ssib044744598
ssib008501289
Score 2.30075
Snippet Let x = ( x 1 , x 2 , … , x n ) , and let K ( u ( x ) , v ( y ) ) satisfy u ( r x ) = r u ( x ) , v ( r y ) = r v ( y ) , K ( r u , v ) = r λ λ 1 K ( u , r − λ...
Abstract Let $x=(x_{1},x_{2},\ldots,x_{n})$ x = ( x 1 , x 2 , … , x n ) , and let $K(u(x),v(y))$ K ( u ( x ) , v ( y ) ) satisfy $u(rx)=ru(x)$ u ( r x ) = r u...
Let x=(x1,x2,…,xn), and let K(u(x),v(y)) satisfy u(rx)=ru(x), v(ry)=rv(y), K(ru,v)=rλλ1K(u,r−λ1λ2v), and K(u,rv)=rλλ2K(r−λ2λ1u,v). In this paper, we obtain a...
Abstract Let x = ( x 1 , x 2 , … , x n ) $x=(x_{1},x_{2},\ldots,x_{n})$ , and let K ( u ( x ) , v ( y ) ) $K(u(x),v(y))$ satisfy u ( r x ) = r u ( x )...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Publisher
StartPage 1
SubjectTerms Analysis
Applications of Mathematics
Bounded operator
Generalized homogeneous kernel
Hilbert-type multiple integral inequality
Integrals
Kernels
Mathematics
Mathematics and Statistics
Necessary and sufficient condition
Operator norm
Operators (mathematics)
The best constant factor
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07S8UwGA3i5OJbvL7I4KbB9iZN0lFFuQg6KbiFNE30orZyWxcX_7rfl7a-QFzc2qalIecLOSeP8xGyjx5nhfaSOQudXIACY7kNjsmMj23u8pDFzHOXV3JyIy5us9svqb5wT1hnD9w13BEwZsGl5RAnXoiQ6dSmQuWFDbyQquzMtpN8EFO91Eq5FsMRGS2PmpRLmTCUSujpBQL62zAU3fq_Ucwfq6JxsDlfJos9S6THXe1WyJyvVslSzxhp3x-bNfJ2TB3SX1oHOpmiXVXLcFKVDvsEaW8H8QgXvjtACdKY4uwrBepHH_ys8o_4-V3nPz19hR_c10813tcvDcWBD8GjtirptG3o1yXvdXJzfnZ9OmF9SgXmYOBpmdMuLxU0oxRe-jEvHWbk8zzk2pa6LNAMPgCFLZR2QSWZlR4UV5kqq4WFp3yDzFd15TcJVdxKQBnddTIB5QCIKqL9W8LVWIcRORha2Dx3zhkmKg4tTYeHATxMxMMkI3KCIHy8ia7X8QHEguljwfwVCyOyM0Bo-q7YGFw-QtdBpUbkcID1s_j3Km39R5W2ycI4hl3GUr5D5tvZi98FGtMWezFi3wHuIe03
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge4EDjwJioSAfuIHVTfzMCbWo1QqpFUJU6s1yHLusKEnZpBcu_HVmHCelSHBL7CROMjOel_0NIW8Q46w2QTHvQMgFeGCsctEzJXnpKl9FmSrPnZyq9Zn4eC7Pc8Ctz8sqpzkxTdRN5zFGvo9ZAASP0_r91Q-GVaMwu5pLaNwlOyV4CuWC7BwenX76PHOUkTgBzwpbCC2ErOY8Q1nwVJO4wKKu0nAxbasxar8vuFIrhu4V4oCB031LdSWE_1tm6V-Z1KSgjh-RB9mypAcjKzwmd0K7Sx5mK5NmGe53yf2TGam1f0J-HVCPBjTtIl1vEPBqYBiWpdNKQ5oBJS7hIIxbMMG5phi_pfAc-i1s23CJt1-MCNabnzDc1-57h-fddU9RdSL5qWsbuhl6-mfS_Ck5Oz768mHNclEG5kF1DcwbXzVaRKlEUKHkjceafoHHyrjGNDXCyUcwgmttfNQr6VQAn60ptDPCQSt_RhZt14bnhGruFPAJ4vNIAf0ucl0nALkV16WJS_J2-t_2asTesMlnMcqO1LFAHZuoY1dLcogkma9E3OzU0G0vbBZDC_6X4MpxmHWCgI8whSuErmoYGkZu1JLsTQS1WZh7e8N6S_JuIvJN979f6cX_n_aS3CsTe0lW8D2yGLbX4RWYOEP9OvPxb5479I0
  priority: 102
  providerName: ProQuest
Title A class of Hilbert-type multiple integral inequalities with the kernel of generalized homogeneous function and its applications
URI https://link.springer.com/article/10.1186/s13660-020-02401-0
https://www.proquest.com/docview/2402324077
https://doaj.org/article/174436a3638e44f581a1479baf3b67d6
Volume 2020
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagvcChQAF1oa186A0sktixneN21WVVqVWFWKk3y3HssqIk1Sa99MJfZ8ZJtrSCQy9W_Eic5PN4Zvz4TMgRcpyV2kvmLAi5AA-MFTY4JnOe2cIVIY8nz52dy8VSnF7ml_f7uONi93FGMnbUUaq1_NKmXMqEobeDtFzgAz8n26B7EmzKIvm68bJSrsW4O-af9z3QQJGo_4F1-WhCNOqZ-WuyMxiIdNoj-oY88_UueTUYi3QQxXaXvDzbEK62b8nvKXVoB9Mm0MUKeas6hqOrdFwwSAdeiGu48P1OSvCRKQ7DUngO_enXtb_G2696IurVHVT3o_nVYLy5bSlqQESR2rqiq66lf899vyPL-cn32YINZyswBxqoY067olIi5FJ46TNeOTyaz_NQaFvpqkRW-AC2bKm0CyrJrfTgelWpslpYSOXvyVbd1H6PUMWtBLiRZicXkG8DV2XkgUu4ynSYkE_j_zY3PYWGia6HlqZHxwA6JqJjkgk5Rkg2JZH-OiY06yszSJMBN0pwaTl0Hl7AR-jUpkIVJVQNNVdyQvZHQM0gk63BeSSkH1RqQj6PIN9n__-VPjyt-EfyIovNLWcp3ydb3frWH4Dl0pWHsaVCqOcQbh-fnF98g9gsExjK2WEcEYBwmU3_AJdG7Gc
link.rule.ids 315,783,787,867,2109,12779,21402,27938,27939,33387,33758,40915,41133,41134,41537,41984,42202,42203,42606,43614,43819,51590,52109,52247,52248,74371,74638
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagHKAHHgXEQgEfuIHVTfzMCRXEskC3p1bqzXIcp11RknaTXrjw15lxnJQiwS2xkzjJzHhe9jeEvEGMs9IExbwDIRfggbHC1Z4pyXNX-KKWsfLc6lAtj8XXE3mSAm5dWlY5zolxoq5ajzHyPcwCIHic1u8vLhlWjcLsaiqhcZvcERwUDe4UX3ye-MlInH4ndS2EFkIWU5Yhz3isSJxhSVdpuBg31Ri112VcqTlD5wpRwMDlvqG4Ir7_DaP0rzxqVE-Lh-R-sivp_sAIj8it0OyQB8nGpEmCux2yvZpwWrvH5Nc-9Wg-07amyzXCXfUMg7J0XGdIE5zEORyEYQMmuNYUo7cUnkO_h00TzvH20wG_ev0Thjtrf7R43l51FBUnEp-6pqLrvqN_psyfkOPFp6OPS5ZKMjAPiqtn3vii0qKWSgQVcl55rOgXeF0YV5mqRDD5GkzgUhtf67l0KoDHVmXaGeGglT8lW03bhGeEau4UcAmi80gB_a7muozwcXOuc1PPyNvxf9uLAXnDRo_FKDtQxwJ1bKSOnc_IByTJdCWiZseGdnNqkxBa8L6ATRyHOScI-AiTuUzoooShYeRKzcjuSFCbRLmz14w3I-9GIl93__uVnv__aa_J3eXR6sAefDn89oLcyyOrSZbxXbLVb67CSzB2-vJV5OjfGhX2GA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagSAgOPAoVCwV84AbWbmLHdk6oPJbl0YoDlXqzHMcuK9qk3aQXLvx1ZhwnpUhwS-wkTjIznhnP-BtCXiDGWaW9ZM6CkAvwwFhpg2Oy4LktXRmKWHlu_0CuDsWno-Io5T91Ka1ynBPjRF23DtfI5xgFQPA4peYhpUV8fbd8fXbOsIIURlpTOY3r5AZoRYVCqpcfJt7SBU7Fk-oWQglRlFPEIc94rE6cYXnXQnMxbrDRct5lXMoFQ0cLEcHA_b6ixCLW_xUD9a-YalRVy3vkTrIx6d7AFPfJNd9sk7vJ3qRJmrttcnt_wmztHpBfe9ShKU3bQFdrhL7qGS7Q0jHnkCZoiRM48MNmTHCzKa7kUngO_eE3jT_B248HLOv1Txjue3va4nl70VFUosgI1DY1Xfcd_TN8_pAcLt9_e7tiqTwDc6DEeua0K2slQiGFlz7ntcPqfp6HUtta1xUCywcwhyulXVCLwkoP3ludKauFhVa-Q7aatvGPCFXcSuAYROopBPTbwFUVoeQWXOU6zMjL8X-bswGFw0TvRUszUMcAdUykjlnMyBskyXQlImjHhnZzbJJAGvDEBJeWw_zjBXyEzmwmVFnB0DByLWdkdySoSWLdmUsmnJFXI5Evu__9So___7Tn5CYws_ny8eDzE3Irj5xWsIzvkq1-c-Gfgt3TV88iQ_8G9gD6TQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+class+of+Hilbert-type+multiple+integral+inequalities+with+the+kernel+of+generalized+homogeneous+function+and+its+applications&rft.jtitle=Journal+of+inequalities+and+applications&rft.au=Hong%2C+Yong&rft.au=Liao%2C+Jianquan&rft.au=Yang%2C+Bicheng&rft.au=Chen%2C+Qiang&rft.date=2020-05-13&rft.issn=1029-242X&rft.eissn=1029-242X&rft.volume=2020&rft.issue=1&rft_id=info:doi/10.1186%2Fs13660-020-02401-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13660_020_02401_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-242X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-242X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-242X&client=summon