A class of Hilbert-type multiple integral inequalities with the kernel of generalized homogeneous function and its applications

Let x = ( x 1 , x 2 , … , x n ) , and let K ( u ( x ) , v ( y ) ) satisfy u ( r x ) = r u ( x ) , v ( r y ) = r v ( y ) , K ( r u , v ) = r λ λ 1 K ( u , r − λ 1 λ 2 v ) , and K ( u , r v ) = r λ λ 2 K ( r − λ 2 λ 1 u , v ) . In this paper, we obtain a necessary and sufficient condition and the best...

Full description

Saved in:
Bibliographic Details
Published inJournal of inequalities and applications Vol. 2020; no. 1; pp. 1 - 13
Main Authors Hong, Yong, Liao, Jianquan, Yang, Bicheng, Chen, Qiang
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 13.05.2020
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Let x = ( x 1 , x 2 , … , x n ) , and let K ( u ( x ) , v ( y ) ) satisfy u ( r x ) = r u ( x ) , v ( r y ) = r v ( y ) , K ( r u , v ) = r λ λ 1 K ( u , r − λ 1 λ 2 v ) , and K ( u , r v ) = r λ λ 2 K ( r − λ 2 λ 1 u , v ) . In this paper, we obtain a necessary and sufficient condition and the best constant factor for the Hilbert-type multiple integral inequality with kernel K ( u ( x ) , v ( y ) ) and discuss its applications in the theory of operators.
ISSN:1029-242X
1025-5834
1029-242X
DOI:10.1186/s13660-020-02401-0