A class of Hilbert-type multiple integral inequalities with the kernel of generalized homogeneous function and its applications
Let x = ( x 1 , x 2 , … , x n ) , and let K ( u ( x ) , v ( y ) ) satisfy u ( r x ) = r u ( x ) , v ( r y ) = r v ( y ) , K ( r u , v ) = r λ λ 1 K ( u , r − λ 1 λ 2 v ) , and K ( u , r v ) = r λ λ 2 K ( r − λ 2 λ 1 u , v ) . In this paper, we obtain a necessary and sufficient condition and the best...
Saved in:
Published in | Journal of inequalities and applications Vol. 2020; no. 1; pp. 1 - 13 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
13.05.2020
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Let
x
=
(
x
1
,
x
2
,
…
,
x
n
)
, and let
K
(
u
(
x
)
,
v
(
y
)
)
satisfy
u
(
r
x
)
=
r
u
(
x
)
,
v
(
r
y
)
=
r
v
(
y
)
,
K
(
r
u
,
v
)
=
r
λ
λ
1
K
(
u
,
r
−
λ
1
λ
2
v
)
, and
K
(
u
,
r
v
)
=
r
λ
λ
2
K
(
r
−
λ
2
λ
1
u
,
v
)
. In this paper, we obtain a necessary and sufficient condition and the best constant factor for the Hilbert-type multiple integral inequality with kernel
K
(
u
(
x
)
,
v
(
y
)
)
and discuss its applications in the theory of operators. |
---|---|
ISSN: | 1029-242X 1025-5834 1029-242X |
DOI: | 10.1186/s13660-020-02401-0 |