Generalized Hyers–Ulam stability of ρ-functional inequalities

In our research work generalized Hyers-Ulam stability of the following functional inequalities is analyzed by using fixed point approach: 0.1 ∥ f ( 2 x + y ) + f ( 2 x − y ) − 2 f ( x + y ) − 2 f ( x − y ) − 12 f ( x ) − ρ ( 4 f ( x + y 2 ) + 4 ( f ( x − y 2 ) − f ( x + y ) − f ( x − y ) ) − 6 f ( x...

Full description

Saved in:
Bibliographic Details
Published inJournal of inequalities and applications Vol. 2023; no. 1; pp. 135 - 18
Main Authors Nawaz, Sundas, Bariq, Abdul, Batool, Afshan, Akgül, Ali
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 24.10.2023
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In our research work generalized Hyers-Ulam stability of the following functional inequalities is analyzed by using fixed point approach: 0.1 ∥ f ( 2 x + y ) + f ( 2 x − y ) − 2 f ( x + y ) − 2 f ( x − y ) − 12 f ( x ) − ρ ( 4 f ( x + y 2 ) + 4 ( f ( x − y 2 ) − f ( x + y ) − f ( x − y ) ) − 6 f ( x ) , r ) ∥ ≥ r r + φ ( x , y ) and 0.2 ∥ f ( 2 x + y ) + f ( 2 x − y ) − 4 f ( x + y ) − 4 f ( x − y ) − 24 f ( x ) + 6 f ( y ) − ρ ( 8 f ( x + y 2 ) + 8 ( f ( x − y 2 ) − 2 f ( x + y ) − 2 f ( x − y ) ) − 12 f ( x ) + 3 f ( y ) , r ) ∥ ≥ r r + φ ( x , y ) in the setting of fuzzy matrix, where ρ ≠ 2 is a real number. We also discussed Hyers-Ulam stability from the application point of view.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1029-242X
1025-5834
1029-242X
DOI:10.1186/s13660-023-03047-4