Cell image segmentation by using feedback and convolutional LSTM

Human brain is known to have a layered structure and perform not only feedforward process from lower layer to upper layer, but also feedback process from upper layer to lower layer. Neural network is a mathematical model of the function of neurons, and several models are proposed until now. Although...

Full description

Saved in:
Bibliographic Details
Published inThe Visual computer Vol. 38; no. 11; pp. 3791 - 3801
Main Authors Shibuya, Eisuke, Hotta, Kazuhiro
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Human brain is known to have a layered structure and perform not only feedforward process from lower layer to upper layer, but also feedback process from upper layer to lower layer. Neural network is a mathematical model of the function of neurons, and several models are proposed until now. Although neural network imitates the human brain, everyone uses only feedforward process and direct feedback process from upper layer to lower layer is not used in prediction process. Therefore, in this paper, we propose Feedback U-Net using convolutional LSTM. Our model is a segmentation model using convolutional LSTM and feedback process. The output of U-Net at the first round is fed back to the input, and our method re-considers the segmentation result at the second round. By using convolutional LSTM, the features are extracted well based on the features extracted at the first round. On both of the Drosophila cell image and Mouse cell image datasets, our model outperformed conventional U-Net which uses only feedforward process.
ISSN:0178-2789
1432-2315
DOI:10.1007/s00371-021-02221-3