Full-scale multi-functional test platform for investigating mechanical performance of track–subgrade systems of high-speed railways

Motivated by the huge practical engineering demand for the fundamental understanding of mechanical characteristics of high-speed railway infrastructure, a full-scale multi-functional test platform for high-speed railway track–subgrade system is developed in this paper, and its main functions for inv...

Full description

Saved in:
Bibliographic Details
Published inRailway Engineering Science (Online) Vol. 28; no. 3; pp. 213 - 231
Main Authors Zhai, Wanming, Wang, Kaiyun, Chen, Zhaowei, Zhu, Shengyang, Cai, Chengbiao, Liu, Gang
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 01.09.2020
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Motivated by the huge practical engineering demand for the fundamental understanding of mechanical characteristics of high-speed railway infrastructure, a full-scale multi-functional test platform for high-speed railway track–subgrade system is developed in this paper, and its main functions for investigating the mechanical performance of track–subgrade systems are elaborated with three typical experimental examples. Comprising the full-scale subgrade structure and all the five types of track structures adopted in Chinese high-speed railways, namely the CRTS I, the CRTS II and the CRTS III ballastless tracks, the double-block ballastless track and the ballasted track, the test platform is established strictly according to the construction standard of Chinese high-speed railways. Three kinds of effective loading methods are employed, including the real bogie loading, multi-point loading and the impact loading. Various types of sensors are adopted in different components of the five types of track–subgrade systems to measure the displacement, acceleration, pressure, structural strain and deformation, etc. Utilizing this test platform, both dynamic characteristics and long-term performance evolution of high-speed railway track–subgrade systems can be investigated, being able to satisfy the actual demand for large-scale operation of Chinese high-speed railways. As examples, three typical experimental studies are presented to elucidate the comprehensive functionalities of the full-scale multi-functional test platform for exploring the dynamic performance and its long-term evolution of ballastless track systems and for studying the long-term accumulative settlement of the ballasted track–subgrade system in high-speed railways. Some interesting phenomena and meaningful results are captured by the developed test platform, which provide a useful guidance for the scientific operation and maintenance of high-speed railway infrastructure.
ISSN:2662-4745
2662-4753
DOI:10.1007/s40534-020-00221-y