SAO Semantic Information Identification for Text Mining
A Subject-Action-Object (SAO) is a triple structure which can be used to both describe topics in detail and explore the relationship between them. SAO analysis has become popular in bibliometrics, however there are two challenges in the identification of SAO structures: low relevance of SAOs to doma...
Saved in:
Published in | International journal of computational intelligence systems Vol. 10; no. 1; pp. 593 - 604 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.01.2017
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
ISSN | 1875-6891 1875-6883 1875-6883 |
DOI | 10.2991/ijcis.2017.10.1.40 |
Cover
Loading…
Abstract | A Subject-Action-Object (SAO) is a triple structure which can be used to both describe topics in detail and explore the relationship between them. SAO analysis has become popular in bibliometrics, however there are two challenges in the identification of SAO structures: low relevance of SAOs to domain topics; and synonyms in SAO. These problems make the identification of SAO greatly dependent upon domain experts, limiting the further usage of SAO and influencing further the mining of SAO characteristics. This paper proposes a parse tree-based SAO identification method that includes (1) a model to identify the core components (candidate terms for subject & object) of SAO structures, where term clumping processes and co-word analysis are involved; (2) a parse tree-based hierarchical SAO extraction model to divide entire SAO structures into a collection of simpler sub-tasks for separate subject, action, and object identification; and (3) an SAO weighting model to rank SAO structures for result selection. The proposed method is applied to publications in the Journal of Scientometrics (SCIM), to identify and rank significant SAO structures. Our experiment results demonstrate the validity and feasibility of the proposed method. |
---|---|
AbstractList | A Subject-Action-Object (SAO) is a triple structure which can be used to both describe topics in detail and explore the relationship between them. SAO analysis has become popular in bibliometrics, however there are two challenges in the identification of SAO structures: low relevance of SAOs to domain topics; and synonyms in SAO. These problems make the identification of SAO greatly dependent upon domain experts, limiting the further usage of SAO and influencing further the mining of SAO characteristics. This paper proposes a parse tree-based SAO identification method that includes (1) a model to identify the core components (candidate terms for subject & object) of SAO structures, where term clumping processes and co-word analysis are involved; (2) a parse tree-based hierarchical SAO extraction model to divide entire SAO structures into a collection of simpler sub-tasks for separate subject, action, and object identification; and (3) an SAO weighting model to rank SAO structures for result selection. The proposed method is applied to publications in the Journal of Scientometrics (SCIM), to identify and rank significant SAO structures. Our experiment results demonstrate the validity and feasibility of the proposed method. |
Author | Yang, Chao Wang, Xuefeng Zhu, Donghua |
Author_xml | – sequence: 1 givenname: Chao surname: Yang fullname: Yang, Chao email: yc_2009@hotmail.com organization: School of Management and Economics, Beijing Institute of Technology – sequence: 2 givenname: Donghua surname: Zhu fullname: Zhu, Donghua organization: School of Management and Economics, Beijing Institute of Technology – sequence: 3 givenname: Xuefeng surname: Wang fullname: Wang, Xuefeng organization: School of Management and Economics, Beijing Institute of Technology |
BookMark | eNp9kEtrAjEUhUNpodb6B7oa6Fp7k4l5LEX6GLC40K5DJpORiCY2M0L775tx-oAuXOXm5J6Tj3ODLn3wFqE7DBMiJX5wW-OaCQHMJ0nCEwoXaIAFn46ZEPnl7yzxNRo1zRYACKYAlA4QX82W2crutW-dyQpfh7jXrQs-KyqbtNqZ_poesrX9aLNX553f3KKrWu8aO_o-h-jt6XE9fxkvls_FfLYYG0pkO9a44oxOsTRQC0rTzCoDpbCC1RwbIiyrBVQ415ZCDiWuakY5TWiYWcNYPkRFn1sFvVWH6PY6fqqgnToJIW6Ujgl9Z5WWuRFUAkx5CiNWVtyynAGB0pRWkJR132cdYng_2qZV23CMPuErQhmfSkZl96Pot0wMTRNtrYxrTx20UbudwqC61tWpddW13klYJf4hIv-sP8BnTXlvatKy39j4R3XG9QWL4Zb- |
CitedBy_id | crossref_primary_10_1007_s11192_022_04280_2 crossref_primary_10_1016_j_joi_2018_01_006 crossref_primary_10_1016_j_joi_2023_101467 crossref_primary_10_1016_j_compind_2024_104167 crossref_primary_10_14489_vkit_2021_11_pp_003_012 crossref_primary_10_1108_LHT_04_2020_0102 crossref_primary_10_1007_s11192_017_2444_5 crossref_primary_10_1080_00207543_2022_2151659 crossref_primary_10_1109_ACCESS_2020_2984024 |
ContentType | Journal Article |
Copyright | the Authors. Published by Atlantis Press 2017 2017. This work is licensed under http://creativecommons.org/licences/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: the Authors. Published by Atlantis Press 2017 – notice: 2017. This work is licensed under http://creativecommons.org/licences/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D DOA |
DOI | 10.2991/ijcis.2017.10.1.40 |
DatabaseName | Springer Nature OA Free Journals CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1875-6883 |
EndPage | 604 |
ExternalDocumentID | oai_doaj_org_article_a93c8490057e402e9d7e636020bcbe82 10_2991_ijcis_2017_10_1_40 |
GroupedDBID | 0R~ 4.4 5GY AAFWJ AAJSJ AAKKN AAYZJ ABEEZ ABFIM ACACY ACGFS ACULB ADBBV ADCVX ADMSI AENEX AFGXO AFKRA AFPKN AHDSZ ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AVBZW BCNDV BENPR BGLVJ C24 C6C CS3 DU5 EBLON EBS EJD GROUPED_DOAJ GTTXZ H13 HCIFZ HZ~ IL9 IPNFZ J~4 K7- M4Z O9- OK1 PIMPY RIG RSV SOJ TDBHL TFL TFW TR2 AASML AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c429t-a1d764519c0f8447646dc0b8e86f71c28e6f80d13ae4030b1df647404416ec663 |
IEDL.DBID | DOA |
ISSN | 1875-6891 1875-6883 |
IngestDate | Wed Aug 27 01:28:33 EDT 2025 Thu Jul 24 01:45:21 EDT 2025 Tue Jul 01 01:20:16 EDT 2025 Thu Apr 24 23:11:29 EDT 2025 Fri Feb 21 02:40:35 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Computational Intelligence Semantic Analysis Topic Model Technology Intelligence Subject-Action-Object |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-a1d764519c0f8447646dc0b8e86f71c28e6f80d13ae4030b1df647404416ec663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/a93c8490057e402e9d7e636020bcbe82 |
PQID | 2467596496 |
PQPubID | 4869256 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a93c8490057e402e9d7e636020bcbe82 proquest_journals_2467596496 crossref_citationtrail_10_2991_ijcis_2017_10_1_40 crossref_primary_10_2991_ijcis_2017_10_1_40 springer_journals_10_2991_ijcis_2017_10_1_40 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170100 2017-00-00 20170101 2017-01-01 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 1 year: 2017 text: 20170100 |
PublicationDecade | 2010 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht – name: Abingdon |
PublicationTitle | International journal of computational intelligence systems |
PublicationTitleAbbrev | Int J Comput Intell Syst |
PublicationYear | 2017 |
Publisher | Springer Netherlands Springer Nature B.V Springer |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V – name: Springer |
References | Su, Lee (CR11) 2010; 85 Noh, Jo, Lee (CR39) 2015; 42 Bergmann, Butzke, Walter, Fuerste, Moehrle, Erdmann (CR22) 2008; 38 Guo, Wang, Li, Zhu (CR25) 2016; 105 Zhang, Zhou, Porter, Gomila, Yan (CR8) 2014; 99 Leydesdorff, Vaughan (CR9) 2006; 57 Bundschus, Dejori, Stetter, Tresp, Kriegel (CR30) 2008; 9 Punuru, Chen (CR31) 2012; 38 CR38 Van Den Besselaar, Heimeriks (CR12) 2006; 68 CR36 CR13 CR35 CR34 CR32 Zhang, Porter, Hu, Guo, Newman (CR15) 2014; 85 Peat, Willett (CR19) 1991; 42 Peters, van Raan (CR17) 1993; 22 Cao (CR33) 2012; 5 Ravikumar, Agrahari, Singh (CR10) 2015; 102 Ding, Chowdhury, Foo (CR16) 2000; 26 Jiang, Tan, Wang (CR26) 2007; 19 Zhao, Gao, Gallinari, Guo (CR3) 2015; 29 CR4 Wang, Qiu, Zhu, Mitkova, Lei, Porter (CR24) 2015; 98 Gudivada, Qu, Chen, Jegga, Neumann, Aronow (CR2) 2008; 41 Zhang, Shang, Huang (CR14) 2016; 10 Choi, Yoon, Kim, Lee, Kim (CR6) 2011; 88 CR7 Lu, Bi-Cheng (CR29) 2008; 28 CR27 Chen, Zhang, Zhu, Lu (CR21) 2015; 26 Li, Wu, Li, Wu (CR28) 2013; 38 Vaughan, You (CR18) 2010; 4 Cunningham, Tablan, Roberts, Bontcheva (CR37) 2013; 9 Moehrle, Walter, Geritz, Muller (CR5) 2005; 35 Choi, Kim, Yoon, Kim, Lee (CR23) 2013; 43 Auer, Lehmann (CR1) 2010; 1 Zhang, Zhang, Chen, Porter, Zhu, Lu (CR20) 2016; 105 |
References_xml | – volume: 29 start-page: 1486 issue: 5 year: 2015 end-page: 1504 ident: CR3 article-title: Knowledge base completion by learning pairwise-interaction differentiated embeddings publication-title: Data Mining and Knowledge Discovery – volume: 68 start-page: 377 issue: 3 year: 2006 end-page: 393 ident: CR12 article-title: Mapping research topics using word-reference co-occurrences: A method and an exploratory case study publication-title: Scientometrics – ident: CR4 – volume: 85 start-page: 26 year: 2014 end-page: 39 ident: CR15 article-title: “Term clumping” for technical intelligence: a case study on dye-sensitized solar cells publication-title: Technological Forecasting and Social Change – volume: 41 start-page: 717 issue: 5 year: 2008 end-page: 729 ident: CR2 article-title: Identifying disease-causal genes using Semantic Web-based representation of integrated genomic and phenomic knowledge publication-title: Journal of Biomedical Informatics – volume: 85 start-page: 65 issue: 1 year: 2010 end-page: 79 ident: CR11 article-title: Mapping knowledge structure by keyword co-occurrence: a first look at journal papers in Technology Foresight publication-title: Scientometrics – volume: 1 start-page: 97 issue: 1 year: 2010 end-page: 104 ident: CR1 article-title: Creating knowledge out of interlinked data publication-title: Semantic Web. – volume: 19 start-page: 164 issue: 2 year: 2007 end-page: 179 ident: CR26 article-title: Mining generalized associations of semantic relations from textual Web content publication-title: Ieee Transactions on Knowledge and Data Engineering – volume: 9 start-page: 1 issue: 1 year: 2008 end-page: 14 ident: CR30 article-title: Extraction of semantic biomedical relations from text using conditional random fields publication-title: Bmc Bioinformatics – volume: 38 start-page: 550 issue: 5 year: 2008 end-page: 562 ident: CR22 article-title: Evaluating the risk of patent infringement by means of semantic patent analysis: the case of DNA chips publication-title: R&D Management – volume: 38 start-page: 191 issue: 1 year: 2012 end-page: 207 ident: CR31 article-title: Learning non-taxonomical semantic relations from domain texts publication-title: Journal of Intelligent Information Systems – volume: 102 start-page: 929 issue: 1 year: 2015 end-page: 955 ident: CR10 article-title: Mapping the intellectual structure of scientometrics: a co-word analysis of the journal Scientometrics (2005–2010) publication-title: Scientometrics – volume: 105 start-page: 179 year: 2016 end-page: 191 ident: CR20 article-title: Topic analysis and forecasting for science, technology and innovation: Methodology with a case study focusing on big data research publication-title: Technological Forecasting and Social Change – volume: 22 start-page: 23 issue: 1 year: 1993 end-page: 45 ident: CR17 article-title: Co-word-based science maps of chemical engineering. Part I: Representations by direct multidimensional scaling publication-title: Research Policy – volume: 5 start-page: 1052 issue: 6 year: 2012 end-page: 1067 ident: CR33 article-title: NAMED ENTITY DISAMBIGUATION: A HYBRID APPROACH publication-title: International Journal of Computational Intelligence Systems – ident: CR35 – volume: 43 start-page: 52 issue: 1 year: 2013 end-page: 74 ident: CR23 article-title: An SAO-based text-mining approach for technology roadmapping using patent information publication-title: R & D Management – volume: 105 start-page: 27 year: 2016 end-page: 40 ident: CR25 article-title: Subject–action–object-based morphology analysis for determining the direction of technological change publication-title: Technological Forecasting and Social Change – volume: 26 start-page: 345 issue: 2 year: 2015 end-page: 353 ident: CR21 article-title: A patent time series processing component for technology intelligence by trend identification functionality publication-title: Neural Computing and Applications – volume: 4 start-page: 483 issue: 4 year: 2010 end-page: 491 ident: CR18 article-title: Word co-occurrences on Webpages as a measure of the relatedness of organizations: A new Webometrics concept publication-title: Journal of Informetrics – ident: CR27 – volume: 88 start-page: 863 issue: 3 year: 2011 end-page: 883 ident: CR6 article-title: SAO network analysis of patents for technology trends identification: a case study of polymer electrolyte membrane technology in proton exchange membrane fuel cells publication-title: Scientometrics – volume: 35 start-page: 513 issue: 5 year: 2005 end-page: 524 ident: CR5 article-title: Patent-based inventor profiles as a basis for human resource decisions in research and development publication-title: R & D Management – volume: 98 start-page: 24 year: 2015 end-page: 46 ident: CR24 article-title: Identification of technology development trends based on subject–action–object analysis: The case of dye-sensitized solar cells publication-title: Technological Forecasting and Social Change – volume: 38 start-page: 1 issue: 1 year: 2013 end-page: 15 ident: CR28 article-title: A relation extraction method of Chinese named entities based on location and semantic features publication-title: Applied Intelligence – ident: CR38 – ident: CR13 – volume: 10 start-page: 1108 issue: 4 year: 2016 end-page: 1130 ident: CR14 article-title: A hybrid similarity measure method for patent portfolio analysis publication-title: Journal of Informetrics – volume: 9 start-page: e1002854 issue: 2 year: 2013 ident: CR37 article-title: Getting More Out of Biomedical Documents with GATE’s Full Lifecycle Open Source Text Analytics publication-title: PLoS Comput Biol. – volume: 99 start-page: 55 issue: 1 year: 2014 end-page: 75 ident: CR8 article-title: Triple Helix innovation in China’s dye-sensitized solar cell industry: hybrid methods with semantic TRIZ and technology roadmapping publication-title: Scientometrics – ident: CR32 – ident: CR34 – ident: CR36 – volume: 42 start-page: 378 issue: 5 year: 1991 end-page: 383 ident: CR19 article-title: The limitations of term cooccurrence data for query expansion in document retrieval systems publication-title: JASIS – ident: CR7 – volume: 28 start-page: 1444 issue: 6 year: 2008 end-page: 1437 ident: CR29 article-title: Named entity relation extraction based on SVM training by positive and negative cases publication-title: Journal of Computer Applications – volume: 42 start-page: 4348 issue: 9 year: 2015 end-page: 4360 ident: CR39 article-title: Keyword selection and processing strategy for applying text mining to patent analysis publication-title: Expert Systems with Applications – volume: 26 start-page: 429 issue: 6 year: 2000 end-page: 451 ident: CR16 article-title: Incorporating the results of co-word analyses to increase search variety for information retrieval publication-title: Journal of Information Science – volume: 57 start-page: 1616 issue: 12 year: 2006 end-page: 1628 ident: CR9 article-title: Co - occurrence matrices and their applications in information science: extending ACA to the web environment publication-title: Journal of the American Society for Information Science and technology |
SSID | ssj0002140044 ssib050732782 |
Score | 2.155977 |
Snippet | A Subject-Action-Object (SAO) is a triple structure which can be used to both describe topics in detail and explore the relationship between them. SAO analysis... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 593 |
SubjectTerms | Bibliometrics Computational Intelligence Data mining Domains Identification methods Research Article Scientometrics Semantic Analysis Subject-Action-Object Technology Intelligence Topic Model |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQWVh4IwoFeWCDlDhxHGcsFVWFVBjaSt0iP6UiKAiV_89d4hSKVCS2JHYS5zuf72znviPkiqUqlR7_nvIZhwmKVJFWWkRSK2VlZoWyGCg8ehTDKX-YZbNAk4OxMD_272GgZLfzZzNHVm2Wd1G_uxym59sZSwX24L7or9ZTEoa9sdpEBhc8ErJgdYzMhses2aGKrn_Nx_y1LVpZm8E-2Q1uIu3Vcj0gW25xSPaaFAw0aOQRyce9Jzp2r4DP3NAQW4RY0zoC14clOQoFdAIDMR1VGSGOyXRwP-kPo5ALITJgMZaRYjYXSAVjYi85h2NhTaylk8LnzCTSCS9jC9A7DnqrmfWC5xwQYcIZcCtOSGvxtnCnhGaZsnnhFdcs5SAQ6bmQ3IEpM-D-6KRNWINMaQJROOareClhwoBolhWaJaKJl1jJ4za5Xt3zXtNk_Fn7DgFf1USK6-oCSL4MGlOqIjWSFxgtC5-UuMLmDsnNklgb7SQ0s9OIqwx6B2-BcT8rBC9Em9w0Ivwu3tyks_9VPyc7eFqtxcQd0lp-fLoL8E6W-rLqll-Mcts7 priority: 102 providerName: Springer Nature |
Title | SAO Semantic Information Identification for Text Mining |
URI | https://link.springer.com/article/10.2991/ijcis.2017.10.1.40 https://www.proquest.com/docview/2467596496 https://doaj.org/article/a93c8490057e402e9d7e636020bcbe82 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagEwtvRKBUHtggbZw4jjOWiqpCKgxtpW6Rn1IRFITK_-cuj1KQgIUtcpzE-s6-h-P7jpBLlqhEejw95VMOAYpUoVZahFIrZWVqhbKYKDy-F6MZv5un841SX3gmrKIHroDrqTwxkueYNOkg1nG5zRxyXMWRNtrJUvuCzdsIplAHxwznJq-yZEDjst7i0SyQnptlXVQUXdzt2LBEJWH_Fy_z24_R0t4M98lu7SjSfjXAA7LllodkrynCQOs1eUSySf-BTtwzILQwtM4uQrRplYPr6005CjfoFFQxHZc1IY7JbHg7HYzCuhpCaMBmrELFbCaQDMZEXnIO18KaSEsnhc-YiaUTXkYWwAeckkgz6wXPOKDAhDPgWJyQ1vJl6U4JTVNls9wrrlnCQSTScyG5A2NmwAHScUBYg0xhaqpwrFjxVEDIgGgWJZoFoolNrOBRQK7Wz7xWRBm_9r5BwNc9keS6bADRF7Xoi79EH5B2I66iXnnwFdD8aS54LgJy3Yjw8_bPQzr7jyGdkx18Z7VH0yat1du7uwCvZaU7ZHsgBp1ymn4AMkfnaQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQDLDwRhQKeGCDQJw6jjNCBSqPloEisVl-SkVQECr_n7vEKRQJJLbIdhLnu5x9Z_u-I-SQdXRHBjw9FXIODorUidFGJNJo7WTuhHYYKNwfiN4Dv37MHyNNDsbCfNu_h4GSnY6e7AhZtVlxgvp9wsE9X-DgKePxva7oTtdTMoZ_Y7WJDCZ4ImTJ6hiZXx4zMw9VdP0zNuaPbdFqtrlcJcvRTKRntVzXyJwfr5OVJgUDjRq5QYr7szt6718An5GlMbYIsaZ1BG6IS3IUKugQBmLarzJCbJKHy4tht5fEXAiJhRljkmjmCoFUMDYNknO4Fs6mRnopQsFsJr0IMnUAveegt4a5IHjBAREmvAWzYovMj1_HfpvQPNeuKIPmhnU4CEQGLiT3MJVZMH9M1iKsQUbZSBSO-SqeFTgMiKaq0FSIJhYxxdMWOZre81bTZPzZ-hwBn7ZEiuuqACSvosYoXXas5CVGy8InZb50hUdysyw11ngJ3Ww34lJR7-AtMO7npeClaJHjRoRf1b93aed_zQ_IYm_Yv1W3V4ObXbKEVfW6TJvMT94__B5YKhOzX_2in_523ik |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI4QSIgLb8R45sANCk2XpulxDKbxRgIkblGeaAgGQuP_Y6fteEggcauStE3tuLbj-DMhO6yt2zLg6amQc3BQpE6MNiKRRmsncye0w0Thi0vRv-On9_n9lyz-eNq9CUlWOQ2I0jQcHby6EA8ug0FzMHi0A8TaZsU-Sv0-B6d9CjyVGKjtiu54lyVjuEZjaBkM80TIklWZM7885pt2iiD-3yzPH8HSqIN682S2Nh5pp-L2Apnww0Uy1xRmoLWcLpHipnNFb_wzUG1gaZ1xhBygVV5uqDfqKHTQW_g904tYJ2KZ3PWOb7v9pK6QkFjQI6NEM1cIBIixaZCcw7VwNjXSSxEKZjPpRZCpA4Z4DtJsmAuCFxwowoS3YGyskMnhy9CvEprn2hVl0NywNgc2ycCF5B4UnAWjyGQtwhrKKFvDh2MViycFbgRSU0VqKqQmNjHF0xbZHd_zWoFn_Dn6EAk-HonA17Hh5e1B1XKkdNm2kpeYQwuflPnSFR4hz7LUWOMlTHOjYZeqpRHeAtogLwUvRYvsNSz87P59Smv_G75Npq-Peur85PJsncxgT7VZs0EmR2_vfhPMl5HZiiv0Az5i5nA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SAO+Semantic+Information+Identification+for+Text+Mining&rft.jtitle=International+journal+of+computational+intelligence+systems&rft.au=Yang%2C+Chao&rft.au=Zhu%2C+Donghua&rft.au=Wang%2C+Xuefeng&rft.date=2017&rft.issn=1875-6883&rft.eissn=1875-6883&rft.volume=10&rft.issue=1&rft.spage=593&rft_id=info:doi/10.2991%2Fijcis.2017.10.1.40&rft.externalDBID=n%2Fa&rft.externalDocID=10_2991_ijcis_2017_10_1_40 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1875-6891&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1875-6891&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1875-6891&client=summon |