SAO Semantic Information Identification for Text Mining

A Subject-Action-Object (SAO) is a triple structure which can be used to both describe topics in detail and explore the relationship between them. SAO analysis has become popular in bibliometrics, however there are two challenges in the identification of SAO structures: low relevance of SAOs to doma...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of computational intelligence systems Vol. 10; no. 1; pp. 593 - 604
Main Authors Yang, Chao, Zhu, Donghua, Wang, Xuefeng
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.01.2017
Springer Nature B.V
Springer
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A Subject-Action-Object (SAO) is a triple structure which can be used to both describe topics in detail and explore the relationship between them. SAO analysis has become popular in bibliometrics, however there are two challenges in the identification of SAO structures: low relevance of SAOs to domain topics; and synonyms in SAO. These problems make the identification of SAO greatly dependent upon domain experts, limiting the further usage of SAO and influencing further the mining of SAO characteristics. This paper proposes a parse tree-based SAO identification method that includes (1) a model to identify the core components (candidate terms for subject & object) of SAO structures, where term clumping processes and co-word analysis are involved; (2) a parse tree-based hierarchical SAO extraction model to divide entire SAO structures into a collection of simpler sub-tasks for separate subject, action, and object identification; and (3) an SAO weighting model to rank SAO structures for result selection. The proposed method is applied to publications in the Journal of Scientometrics (SCIM), to identify and rank significant SAO structures. Our experiment results demonstrate the validity and feasibility of the proposed method.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1875-6891
1875-6883
1875-6883
DOI:10.2991/ijcis.2017.10.1.40