Power and Reliability Management of SoCs

Today's embedded systems integrate multiple IP cores for processing, communication, and sensing on a single die as systems-on-chip (SoCs). Aggressive transistor scaling, decreased voltage margins and increased processor power and temperature have made reliability assessment a much more signific...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on very large scale integration (VLSI) systems Vol. 15; no. 4; pp. 391 - 403
Main Authors Rosing, T.S., Mihic, K., De Micheli, G.
Format Journal Article
LanguageEnglish
Published Piscataway, NJ IEEE 01.04.2007
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Today's embedded systems integrate multiple IP cores for processing, communication, and sensing on a single die as systems-on-chip (SoCs). Aggressive transistor scaling, decreased voltage margins and increased processor power and temperature have made reliability assessment a much more significant issue. Although reliability of devices and interconnect has been broadly studied, in this work, we study a tradeoff between reliability and power consumption for component-based SoC designs. We specifically focus on hard error rates as they cause a device to permanently stop operating. We also present a joint reliability and power management optimization problem whose solution is an optimal management policy. When careful joint policy optimization is performed, we obtain a significant improvement in energy consumption (40%) in tandem with meeting a reliability constraint for all SoC operating temperatures
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1063-8210
1557-9999
DOI:10.1109/TVLSI.2007.895245