Radioresistant Pulmonary Oligometastatic and Oligoprogressive Lesions From Nonlung Primaries: Impact of Histology and Dose-Fractionation on Local Control After Radiation Therapy

We investigated whether pulmonary metastases from historically considered radioresistant primaries would have inferior local control after radiation therapy than those from nonradioresistant nonlung primaries, and whether higher biologically effective dose assuming alpha/beta=10 (BED10) would be ass...

Full description

Saved in:
Bibliographic Details
Published inAdvances in radiation oncology Vol. 9; no. 6; p. 101500
Main Authors Verma, Nipun, Laird, James H., Moore, Nicholas S., Hayman, Thomas J., Housri, Nadine, Peters, Gabrielle W., Knowlton, Christin A., Jairam, Vikram, Campbell, Allison M., Park, Henry S.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.06.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We investigated whether pulmonary metastases from historically considered radioresistant primaries would have inferior local control after radiation therapy than those from nonradioresistant nonlung primaries, and whether higher biologically effective dose assuming alpha/beta=10 (BED10) would be associated with superior local control. We identified patients treated with radiation therapy for oligometastatic or oligoprogressive pulmonary disease to 1 to 5 lung metastases from nonlung primaries in 2013 to 2020 at a single health care system. Radioresistant primary cancers included colorectal carcinoma, endometrial carcinoma, renal cell carcinoma, melanoma, and sarcoma. Nonradioresistant primary cancers included breast, bladder, esophageal, pancreas, and head and neck carcinomas. The Kaplan-Meier estimator, log-rank test, and multivariable Cox proportional hazards regression were used to compare local recurrence-free survival (LRFS), new metastasis-free survival, progression-free survival, and overall survival. Among 114 patients, 73 had radioresistant primary cancers. The median total dose was 50 Gy (IQR, 50-54 Gy) and the median number of fractions was 5 (IQR, 3-5). Median follow-up time was 59.6 months. One of 41 (2.4%) patients with a nonradioresistant metastasis experienced local failure compared with 18 of 73 (24.7%) patients with radioresistant metastasis (log-rank P = .004). Among radioresistant metastases, 12 of 41 (29.2%) patients with colorectal carcinoma experienced local failure compared with 6 of 32 (18.8%) with other primaries (log-rank P = .018). BED10 ≥100 Gy was associated with decreased risk of local recurrence. On univariable analysis, BED10 ≥100 Gy (hazard ratio [HR], 0.263; 95% CI, 0.105-0.656; P = .004) was associated with higher LRFS, and colorectal primary (HR, 3.060; 95% CI, 1.204-7.777; P = .019) was associated with lower LRFS, though these were not statistically significant on multivariable analysis. Among colorectal primary patients, BED10 ≥100 Gy was associated with higher LRFS (HR, 0.266; 95% CI, 0.072-0.985; P = .047) on multivariable analysis. Local control after radiation therapy was encouraging for pulmonary metastases from most nonlung primaries, even for many of those classically considered to be radioresistant. Those from colorectal primaries may benefit from testing additional strategies, such as resection or systemic treatment concurrent with radiation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2452-1094
2452-1094
DOI:10.1016/j.adro.2024.101500