Localization and recurrence of a quantum walk in a periodic potential on a line

We present a numerical study of a model of quantum walk in a periodic potential on a line. We take the simple view that different potentials have different affects on the way in which the coin state of the walker is changed. For simplicity and definiteness, we assume that the walker's coin state is...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 23; no. 11; pp. 161 - 168
Main Author 鄒忠毅 何俊麟
Format Journal Article
LanguageEnglish
Published 01.11.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We present a numerical study of a model of quantum walk in a periodic potential on a line. We take the simple view that different potentials have different affects on the way in which the coin state of the walker is changed. For simplicity and definiteness, we assume that the walker's coin state is unaffected at sites without the potential, and rotated in an unbiased way according to the Hadamard matrix at sites with the potential. This is the simplest and most natural model of a quantum walk in a periodic potential with two coins. Six generic cases of such quantum walks are studied numerically. It is found that, of the six cases, four cases display significant localization effect where the walker is confined in the neighborhood of the origin for a sufficiently long time. Associated with such a localization effect is the recurrence of the probability of the walker returning to the neighborhood of the origin.
Bibliography:Chou Chung-I and Ho Choon-Lin( a) Department of Physics, Chinese Culture University, Taipei 111, Taiwan, China b) Department of Physics, Tamkang University, Tamsui 251, Taiwan, China
quantum walk, periodic potential, localization, recurrence
11-5639/O4
We present a numerical study of a model of quantum walk in a periodic potential on a line. We take the simple view that different potentials have different affects on the way in which the coin state of the walker is changed. For simplicity and definiteness, we assume that the walker's coin state is unaffected at sites without the potential, and rotated in an unbiased way according to the Hadamard matrix at sites with the potential. This is the simplest and most natural model of a quantum walk in a periodic potential with two coins. Six generic cases of such quantum walks are studied numerically. It is found that, of the six cases, four cases display significant localization effect where the walker is confined in the neighborhood of the origin for a sufficiently long time. Associated with such a localization effect is the recurrence of the probability of the walker returning to the neighborhood of the origin.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/23/11/110302