Theory and experimental investigation of a weir-type inclined solar still

A weir-type solar still is proposed to recover rejected water from the water purifying systems for solar hydrogen production. This consists of an inclined absorber plate formed to make weirs, as well as a top basin and a bottom basin. Water is flowed from the top basin over the weirs to the bottom c...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 33; no. 1; pp. 71 - 80
Main Authors Sadineni, S.B., Hurt, R., Halford, C.K., Boehm, R.F.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 2008
Elsevier Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A weir-type solar still is proposed to recover rejected water from the water purifying systems for solar hydrogen production. This consists of an inclined absorber plate formed to make weirs, as well as a top basin and a bottom basin. Water is flowed from the top basin over the weirs to the bottom collection basin. A small pump is used to return the unevaporated water to the top tank. Hourly distillate productivity of the still with double- and single-pane glass covers was measured and the latter showed higher production rates. The average distillate productivities for double- and single-pane glass covers are approximately 2.2 and 5.5 l/m 2/day in the months of August and September in Las Vegas, respectively. Mathematical models that can predict the hourly distillate productivity are developed. These compared well with the experimental results. Productivity of the weir-type still with a single-pane glass was also compared with conventional basin types tested at the same location. The productivity of the weir-type still is approximately 20% higher. The quality of distillate from the still is analyzed to verify the ability of the still to meet the standards required by the electrolyzers.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0360-5442
DOI:10.1016/j.energy.2007.08.003