Copper micromesh-based lightweight transparent conductor with short response time for wearable heaters

Thickness-controlled transparent conducting films (TCFs) were fabricated by transfer printing a 100 nm thick Cu micromesh structure onto poly(vinyl alcohol) (PVA) substrates of different thicknesses (~ 50, ~ 80, and ~ 120 μm) to develop a lightweight transparent wearable heater with short response t...

Full description

Saved in:
Bibliographic Details
Published inMicro and nano systems letters Vol. 9; no. 1; pp. 1 - 10
Main Authors Kim, Han-Jung, Kim, Yoonkap
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 25.10.2021
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Thickness-controlled transparent conducting films (TCFs) were fabricated by transfer printing a 100 nm thick Cu micromesh structure onto poly(vinyl alcohol) (PVA) substrates of different thicknesses (~ 50, ~ 80, and ~ 120 μm) to develop a lightweight transparent wearable heater with short response time. The Cu mesh-based TCF fabricated on a ~ 50 µm thick PVA substrate exhibited excellent optical and electrical properties with a light transmittance of 86.7% at 550 nm, sheet resistance of ~ 10.8 Ω/sq, and figure-of-merit of approximately 236, which are comparable to commercial indium tin oxide film-based transparent conductors. The remarkable flexibility of the Cu mesh-based TCF was demonstrated through cyclic mechanical bending tests. In addition, the Cu mesh-based TCF with ~ 50 μm thick PVA substrate demonstrated a fast Joule heating performance with a thermal response time of ~ 18.0 s and a ramping rate of ~ 3.0 ℃/s under a driving voltage of 2.5 V. Lastly, the reliable response and recovery characteristics of the Cu mesh/PVA film-based transparent heater were confirmed through the cyclic power test. We believe that the results of this study is useful in the development of flexible transparent heaters, including lightweight deicing/defogging films, wearable sensors/actuators, and medical thermotherapy pads.
ISSN:2213-9621
2213-9621
DOI:10.1186/s40486-021-00132-5