General invariance and equilibrium conditions for lattice dynamics in 1D, 2D, and 3D materials
The long-wavelength behavior of vibrational modes plays a central role in carrier transport, phonon-assisted optical properties, superconductivity, and thermomechanical and thermoelectric properties of materials. Here, we present general invariance and equilibrium conditions of the lattice potential...
Saved in:
Published in | npj computational materials Vol. 8; no. 1; pp. 1 - 11 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
15.11.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The long-wavelength behavior of vibrational modes plays a central role in carrier transport, phonon-assisted optical properties, superconductivity, and thermomechanical and thermoelectric properties of materials. Here, we present general invariance and equilibrium conditions of the lattice potential; these allow to recover the quadratic dispersions of flexural phonons in low-dimensional materials, in agreement with the phenomenological model for long-wavelength bending modes. We also prove that for any low-dimensional material the bending modes can have a purely out-of-plane polarization in the vacuum direction and a quadratic dispersion in the long-wavelength limit. In addition, we propose an effective approach to treat invariance conditions in crystals with non-vanishing Born effective charges where the long-range dipole-dipole interactions induce a contribution to the lattice potential and stress tensor. Our approach is successfully applied to the phonon dispersions of 158 two-dimensional materials, highlighting its critical relevance in the study of phonon-mediated properties of low-dimensional materials. |
---|---|
ISSN: | 2057-3960 2057-3960 |
DOI: | 10.1038/s41524-022-00920-6 |