On the local systolic optimality of Zoll contact forms
We prove a normal form for contact forms close to a Zoll one and deduce that Zoll contact forms on any closed manifold are local maximizers of the systolic ratio. Corollaries of this result are: (1) sharp local systolic inequalities for Riemannian and Finsler metrics close to Zoll ones, (2) the pert...
Saved in:
Published in | Geometric and functional analysis Vol. 33; no. 2; pp. 299 - 363 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.04.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1016-443X 1420-8970 |
DOI | 10.1007/s00039-023-00624-z |
Cover
Loading…
Summary: | We prove a normal form for contact forms close to a Zoll one and deduce that Zoll contact forms on any closed manifold are local maximizers of the systolic ratio. Corollaries of this result are: (1) sharp local systolic inequalities for Riemannian and Finsler metrics close to Zoll ones, (2) the perturbative case of a conjecture of Viterbo on the symplectic capacity of convex bodies, (3) a generalization of Gromov’s non-squeezing theorem in the intermediate dimensions for symplectomorphisms that are close to linear ones. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1016-443X 1420-8970 |
DOI: | 10.1007/s00039-023-00624-z |