Harmful effects of lithium-ion battery thermal runaway: scale-up tests from cell to second-life modules

For a comprehensive safety assessment of stationary lithium-ion-battery applications, it is necessary to better understand the consequences of thermal runaway (TR). In this study, experimental tests comprising twelve TR experiments including four single-cell tests, two cell stack tests and six secon...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 13; no. 3; pp. 2761 - 2779
Main Authors Tschirschwitz, Rico, Bernardy, Christopher, Wagner, Patrick, Rappsilber, Tim, Liebner, Christian, Hahn, Sarah-K, Krause, Ulrich
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 07.07.2023
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:For a comprehensive safety assessment of stationary lithium-ion-battery applications, it is necessary to better understand the consequences of thermal runaway (TR). In this study, experimental tests comprising twelve TR experiments including four single-cell tests, two cell stack tests and six second-life module tests (2.65 kW h and 6.85 kW h) with an NMC-cathode under similar initial conditions were conducted. The temperature (direct at cells/modules and in near field), mass loss, cell/module voltage, and qualitative vent gas composition (Fourier transform infrared (FTIR) and diode laser spectroscopy (DLS) for HF) were measured. The results of the tests showed that the battery TR is accompanied by severe and in some cases violent chemical reactions. In most cases, TR was not accompanied by pre-gassing of the modules. Jet flames up to a length of 5 m and fragment throwing to distances to more than 30 m were detected. The TR of the tested modules was accompanied by significant mass loss of up to 82%. The maximum HF concentration measured was 76 ppm, whereby the measured HF concentrations in the module tests were not necessarily higher than that in the cell stack tests. Subsequently, an explosion of the released vent gas occurred in one of the tests, resulting in the intensification of the negative consequences. According to the evaluation of the gas measurements with regard to toxicity base on the "Acute Exposure Guideline Levels" (AEGL), there is some concern with regards to CO, which may be equally as important to consider as the release of HF. Unique scaled up thermal runaway tests were performed with lithium-ion batteries from the cell level to module level for stationary applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2046-2069
2046-2069
DOI:10.1039/d3ra02881j