Experimental investigations on heat transfer in phase change materials (PCMs) embedded in porous materials

This paper presents an experimental study on heat transfer characteristics of PCMs embedded in open-cell metal foams and expanded graphite, respectively. In this study the paraffin wax RT 27 and calcium chloride hexahydrate are employed as the heat storage media and the transient heat transfer behav...

Full description

Saved in:
Bibliographic Details
Published inApplied thermal engineering Vol. 31; no. 5; pp. 970 - 977
Main Authors Zhou, D., Zhao, C.Y.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.04.2011
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents an experimental study on heat transfer characteristics of PCMs embedded in open-cell metal foams and expanded graphite, respectively. In this study the paraffin wax RT 27 and calcium chloride hexahydrate are employed as the heat storage media and the transient heat transfer behavior is measured. The results indicate that the addition of porous materials, either open-cell metal foams or expanded graphite, can enhance the heat transfer rate of PCMs. Especially for metal foams, the results show that they can double the overall heat transfer rate during the melting processes. The effect of mass ratio of expanded graphite on heat transfer is examined. ► Heat transfer performance of PCMs embedded in porous materials is experimentally investigated. ► Addition of metal foams and expanded graphite can significantly enhance the heat transfer of PCMs. ► Metal foams can provide better heat transfer performance than expanded graphite due to their continuous structures.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1359-4311
DOI:10.1016/j.applthermaleng.2010.11.022