Ebselen: prospective therapy for cerebral ischaemia

Stroke occurs due to haemorrhage or occlusive injury and results in ischaemia and reperfusion injury. A variety of destructive mechanisms are involved including oxygen radical generation, calcium overload, cytotoxicity and apoptosis as well as the generation of inflammatory mediators. Ebselen, 2-phe...

Full description

Saved in:
Bibliographic Details
Published inExpert opinion on investigational drugs Vol. 9; no. 3; p. 607
Main Authors Parnham, M, Sies, H
Format Journal Article
LanguageEnglish
Published England 01.03.2000
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Stroke occurs due to haemorrhage or occlusive injury and results in ischaemia and reperfusion injury. A variety of destructive mechanisms are involved including oxygen radical generation, calcium overload, cytotoxicity and apoptosis as well as the generation of inflammatory mediators. Ebselen, 2-phenyl-1, 2-benzisoselenazol-3(2H)-one (PZ 51, DR3305), is a mimic of GSH peroxidase which also reacts with peroxynitrite and can inhibit enzymes such as lipoxygenases, NO synthases, NADPH oxidase, protein kinase C and H(+)/K(+)-ATPase. Ebselen is in a late stage of development for the treatment of stroke. The molecular actions of ebselen contribute to its anti-inflammatory and anti-oxidant properties, which have been demonstrated in a variety of in vivo models. Numerous in vitro experiments using isolated LDL, liposomes, microsomes, isolated cells and organs have established that ebselen protects against oxidative challenge. Unlike many inorganic and aliphatic selenium compounds, ebselen has low toxicity as metabolism of the compound does not liberate the selenium moiety, which remains within the ring structure. Subsequent metabolism involves methylation, glucuronidation and hydroxylation. Experimental studies in rats and dogs have revealed that ebselen is able to inhibit both vasospasm and tissue damage in stroke models, which correlates with its inhibitory effects on oxidative processes. Results from randomised, placebo-controlled, double-blind clinical studies on the neurological consequences of acute ischaemic stroke, subarachnoid haemorrhage and acute middle cerebral artery occlusion, have revealed that ebselen significantly enhances outcome in patients who have experienced occlusive cerebral ischaemia of limited duration. The benefit achieved with ebselen is closely related to the rapidity with which the treatment is initiated, following the onset of the stroke attack. Safety and tolerability are good and no adverse effects have become apparent. Ebselen is currently at the pre-registration stage for subarachnoid haemorrhage and stroke in Japan.
ISSN:1354-3784
DOI:10.1517/13543784.9.3.607