Boundedness of commutators of variable Marcinkiewicz fractional integral operator in grand variable Herz spaces

Let S n − 1 denote unit sphere in R n equipped with the normalized Lebesgue measure. Let Φ ∈ L s ( S n − 1 ) be a homogeneous function of degree zero such that ∫ S n − 1 Φ ( y ′ ) d σ ( y ′ ) = 0 , where y ′ = y / | y | for any y ≠ 0 . The commutators of variable Marcinkiewicz fractional integral op...

Full description

Saved in:
Bibliographic Details
Published inJournal of inequalities and applications Vol. 2024; no. 1; pp. 93 - 16
Main Authors Sultan, Babar, Sultan, Mehvish, Khan, Aziz, Abdeljawad, Thabet
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 11.07.2024
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Let S n − 1 denote unit sphere in R n equipped with the normalized Lebesgue measure. Let Φ ∈ L s ( S n − 1 ) be a homogeneous function of degree zero such that ∫ S n − 1 Φ ( y ′ ) d σ ( y ′ ) = 0 , where y ′ = y / | y | for any y ≠ 0 . The commutators of variable Marcinkiewicz fractional integral operator is defined as [ b , μ Φ ] β m ( f ) ( x ) = ( ∫ 0 ∞ | ∫ | x − y | ≤ s Φ ( x − y ) [ b ( x ) − b ( y ) ] m | x − y | n − 1 − β ( x ) f ( y ) d y | 2 d s s 3 ) 1 2 . In this paper, we obtain the boundedness of the commutators of the variable Marcinkiewicz fractional integral operator on grand variable Herz spaces K ˙ p ( ⋅ ) α ( ⋅ ) , q ) , θ ( R n ) .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1029-242X
1025-5834
1029-242X
DOI:10.1186/s13660-024-03169-3