Boundedness of commutators of variable Marcinkiewicz fractional integral operator in grand variable Herz spaces
Let S n − 1 denote unit sphere in R n equipped with the normalized Lebesgue measure. Let Φ ∈ L s ( S n − 1 ) be a homogeneous function of degree zero such that ∫ S n − 1 Φ ( y ′ ) d σ ( y ′ ) = 0 , where y ′ = y / | y | for any y ≠ 0 . The commutators of variable Marcinkiewicz fractional integral op...
Saved in:
Published in | Journal of inequalities and applications Vol. 2024; no. 1; pp. 93 - 16 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
11.07.2024
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Let
S
n
−
1
denote unit sphere in
R
n
equipped with the normalized Lebesgue measure. Let
Φ
∈
L
s
(
S
n
−
1
)
be a homogeneous function of degree zero such that
∫
S
n
−
1
Φ
(
y
′
)
d
σ
(
y
′
)
=
0
, where
y
′
=
y
/
|
y
|
for any
y
≠
0
. The commutators of variable Marcinkiewicz fractional integral operator is defined as
[
b
,
μ
Φ
]
β
m
(
f
)
(
x
)
=
(
∫
0
∞
|
∫
|
x
−
y
|
≤
s
Φ
(
x
−
y
)
[
b
(
x
)
−
b
(
y
)
]
m
|
x
−
y
|
n
−
1
−
β
(
x
)
f
(
y
)
d
y
|
2
d
s
s
3
)
1
2
.
In this paper, we obtain the boundedness of the commutators of the variable Marcinkiewicz fractional integral operator on grand variable Herz spaces
K
˙
p
(
⋅
)
α
(
⋅
)
,
q
)
,
θ
(
R
n
)
. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1029-242X 1025-5834 1029-242X |
DOI: | 10.1186/s13660-024-03169-3 |