Cbln1 is essential for synaptic integrity and plasticity in the cerebellum
Cbln1 is a cerebellum-specific protein of previously unknown function that is structurally related to the C1q and tumor necrosis factor families of proteins. We show that Cbln1 is a glycoprotein secreted from cerebellar granule cells that is essential for three processes in cerebellar Purkinje cells...
Saved in:
Published in | Nature neuroscience Vol. 8; no. 11; pp. 1534 - 1541 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Nature Publishing Group
01.11.2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Cbln1 is a cerebellum-specific protein of previously unknown function that is structurally related to the C1q and tumor necrosis factor families of proteins. We show that Cbln1 is a glycoprotein secreted from cerebellar granule cells that is essential for three processes in cerebellar Purkinje cells: the matching and maintenance of pre- and postsynaptic elements at parallel fiber-Purkinje cell synapses, the establishment of the proper pattern of climbing fiber-Purkinje cell innervation, and induction of long-term depression at parallel fiber-Purkinje cell synapses. Notably, the phenotype of cbln1-null mice mimics loss-of-function mutations in the orphan glutamate receptor, GluR delta2, a gene selectively expressed in Purkinje neurons. Therefore, Cbln1 secreted from presynaptic granule cells may be a component of a transneuronal signaling pathway that controls synaptic structure and plasticity. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1097-6256 1546-1726 |
DOI: | 10.1038/nn1576 |