antimicrobial action of chitosan, low molar mass chitosan, and chitooligosaccharides on human colonic bacteria

Antibacterial effect of chitooligosaccharides (COS) and low molar mass chitosans (LMWC) is considered as one of the most important characteristics of chitosan (CS) hydrolysates. Here, we show the in vitro effect of different COS, LMWC, and CS on representative anaerobic bacteria isolated from human...

Full description

Saved in:
Bibliographic Details
Published inFolia microbiologica Vol. 57; no. 4; pp. 341 - 345
Main Authors Simnek, Jiri, Brandysova, Vra, Koppova, Ingrid
Format Journal Article
LanguageEnglish
Published Dordrecht Springer-Verlag 01.07.2012
Springer Netherlands
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Antibacterial effect of chitooligosaccharides (COS) and low molar mass chitosans (LMWC) is considered as one of the most important characteristics of chitosan (CS) hydrolysates. Here, we show the in vitro effect of different COS, LMWC, and CS on representative anaerobic bacteria isolated from human colon as a possibility of targeting modification of colonic microflora composition by supplementation of dietary CS products by humans. Specific growth rate of seven selected nonpathogenic anaerobic bacterial strains (Clostridium paraputrificum, Clostridium beijerinckii, Roseburia intestinalis, Bacteroides vulgatus, Bacteriodes thetaiotaomicron, Faecalibacterium prausnitzii and Blautia coccoides) was determined in the presence of 0.25 and 0.5% COS (2, 3, and 6 kDa), 0.025 and 0.05% of LMWC (10 and 16 kDa), and 0.025 and 0.1% of CS in vitro. The growth rate decreased in all strains in the presence of COS and LMWC in higher concentrations in comparison to control incubations. A relatively higher resistance to CS hydrolyzates was detected in R. intestinalis and F. prausnitzii, and more susceptible were bacteria belonging to Bacteoides sp. and Clostridium sp. The antimicrobial activity, minimum inhibitory concentrations (MIC), and minimal bactericidal concentrations (MBC) were determined. The antimicrobial activity increased with the degree of polymerization (DP). MIC ranged from 0.25 to 4.5% in dependence on bacterial strain and DP of CS/LMWC. MBC also decreased with DP. The most effective antimicrobial action was detected in LMWC with 16 kDa and CS. Weak antimicrobial activity was found in COS with small molecules (2 and 3 kDa).
Bibliography:http://dx.doi.org/10.1007/s12223-012-0138-1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0015-5632
1874-9356
DOI:10.1007/s12223-012-0138-1