Millimeter‐wave diffraction‐loss model based on over‐rooftop propagation measurements
Measuring the diffraction loss for high frequencies, long distances, and large diffraction angles is difficult because of the high path loss. Securing a well‐controlled environment to avoid reflected waves also makes long‐range diffraction measurements challenging. Thus, the prediction of diffractio...
Saved in:
Published in | ETRI journal Vol. 42; no. 6; pp. 827 - 836 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Electronics and Telecommunications Research Institute (ETRI)
01.12.2020
한국전자통신연구원 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Measuring the diffraction loss for high frequencies, long distances, and large diffraction angles is difficult because of the high path loss. Securing a well‐controlled environment to avoid reflected waves also makes long‐range diffraction measurements challenging. Thus, the prediction of diffraction loss at millimeter‐wave frequency bands relies on theoretical models, such as the knife‐edge diffraction (KED) and geometrical theory of diffraction (GTD) models; however, these models produce different diffraction losses even under the same environment. Our observations revealed that the KED model underestimated the diffraction loss in a large Fresnel‐Kirchhoff diffraction parameter environment. We collected power‐delay profiles when millimeter waves propagated over a building rooftop at millimeter‐wave frequency bands and calculated the diffraction losses from the measurements while eliminating the multipath effects. Comparisons between the measurements and the KED and GTD diffraction‐loss models are shown. Based on the measurements, an approximation model is also proposed that provides a simple method for calculating the diffraction loss using geometrical parameters. |
---|---|
AbstractList | Measuring the diffraction loss for high frequencies, long distances, and large diffraction angles is difficult because of the high path loss. Securing a well‐controlled environment to avoid reflected waves also makes long‐range diffraction measurements challenging. Thus, the prediction of diffraction loss at millimeter‐wave frequency bands relies on theoretical models, such as the knife‐edge diffraction (KED) and geometrical theory of diffraction (GTD) models; however, these models produce different diffraction losses even under the same environment. Our observations revealed that the KED model underestimated the diffraction loss in a large Fresnel‐Kirchhoff diffraction parameter environment. We collected power‐delay profiles when millimeter waves propagated over a building rooftop at millimeter‐wave frequency bands and calculated the diffraction losses from the measurements while eliminating the multipath effects. Comparisons between the measurements and the KED and GTD diffraction‐loss models are shown. Based on the measurements, an approximation model is also proposed that provides a simple method for calculating the diffraction loss using geometrical parameters. Measuring the diffraction loss for high frequencies, long distances, and large diffraction angles is difficult because of the high path loss. Securing a well‐controlled environment to avoid reflected waves also makes long‐range diffraction measurements challenging. Thus, the prediction of diffraction loss at millimeter‐wave frequency bands relies on theoretical models, such as the knife‐edge diffraction (KED) and geometrical theory of diffraction (GTD) models; however, these models produce different diffraction losses even under the same environment. Our observations revealed that the KED model underestimated the diffraction loss in a large Fresnel‐Kirchhoff diffraction parameter environment. We collected power‐delay profiles when millimeter waves propagated over a building rooftop at millimeter‐wave frequency bands and calculated the diffraction losses from the measurements while eliminating the multipath effects. Comparisons between the measurements and the KED and GTD diffraction‐loss models are shown. Based on the measurements, an approximation model is also proposed that provides a simple method for calculating the diffraction loss using geometrical parameters. KCI Citation Count: 1 |
Author | Yoon, Young Keun Chong, Young Jun Park, Jae‐Joon Kim, Kyung‐Won Kim, Myung‐Don Lee, Juyul |
Author_xml | – sequence: 1 givenname: Kyung‐Won orcidid: 0000-0002-9663-9954 surname: Kim fullname: Kim, Kyung‐Won email: kimkw@etri.re.kr organization: Electronics and Telecommunications Research Institute – sequence: 2 givenname: Myung‐Don surname: Kim fullname: Kim, Myung‐Don organization: Electronics and Telecommunications Research Institute – sequence: 3 givenname: Juyul orcidid: 0000-0002-5851-0615 surname: Lee fullname: Lee, Juyul organization: Electronics and Telecommunications Research Institute – sequence: 4 givenname: Jae‐Joon surname: Park fullname: Park, Jae‐Joon organization: Electronics and Telecommunications Research Institute – sequence: 5 givenname: Young Keun orcidid: 0000-0002-2062-1432 surname: Yoon fullname: Yoon, Young Keun organization: Electronics and Telecommunications Research Institute – sequence: 6 givenname: Young Jun surname: Chong fullname: Chong, Young Jun organization: Electronics and Telecommunications Research Institute |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002655969$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNqFkUFr3DAQhUVJoZuk51597cGJNJK11nEJabuQUgibUw9iJI8W7drWIjsJueUn5Df2l9TrLbn29ODx3huY75yd9aknxr4IfqVA1Nc05ri7Ai5MyZUQH9gCQMpyKUGfsYUAqEqttPzEzodhxzlwVdUL9vtnbNvY0Uj5z-vbMz5R0cQQMvoxpn6y2jQMRZcaaguHAzVF6ov0NKdzSmFMh-KQ0wG3eCwUHeHwmKmjfhwu2ceA7UCf_-kFe_h2u7n5Ud79-r6-Wd2VXoHRpVnWSgcwioKW2jusHaELQQmlPAe9VEQCRUNB1uB8xR0JSVhp4rUwzVJesK-n3T4Hu_fRJoyzbpPdZ7u636yt0QDKiCm7PmWbhDt7yLHD_DIXZiPlrcU8Rt-S1aicns6CM6ACVU6h8ZVAQ1qBqqtp6_q05fP0pEzhfU9we2RiZyb2yMQemUwNfWo8x5Ze_he3t5t7mMDVWv4F1ySXdg |
CitedBy_id | crossref_primary_10_1109_LWC_2024_3368273 crossref_primary_10_1109_ACCESS_2021_3062907 crossref_primary_10_1109_TVT_2022_3176622 |
Cites_doi | 10.1109/8.14401 10.4108/icst.5gu.2014.258145 10.1109/TAP.2014.2318334 10.1109/TAP.2013.2297164 10.1109/TAP.2018.2797531 10.1109/ICTC.2015.7354731 10.1364/JOSA.52.000116 10.1109/15.990736 10.1109/PROC.1974.9651 10.1109/ISAPE.2010.5696505 10.1109/25.312770 10.1109/TAP.2008.919163 10.1109/VTCFall.2017.8287881 10.1109/TAP.1984.1143189 10.1109/8.660975 10.1109/TAP.2017.2754443 10.1109/TAP.2017.2740959 10.1109/JRPROC.1933.227639 10.1109/25.740101 10.1109/15.709421 10.1109/TAP.2017.2734159 |
ContentType | Journal Article |
Copyright | 2020 ETRI |
Copyright_xml | – notice: 2020 ETRI |
DBID | AAYXX CITATION DOA ACYCR |
DOI | 10.4218/etrij.2019-0411 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2233-7326 |
EndPage | 836 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9622491 oai_doaj_org_article_6a4b61de2b924fe5b4a9c51a9e642485 10_4218_etrij_2019_0411 ETR212286 |
Genre | article |
GrantInformation_xml | – fundername: Institute for Information and communications Technology Promotion funderid: 2017‐0‐00066 |
GroupedDBID | -~X .4S .DC .UV 0R~ 1OC 29G 2WC 5GY 5VS 9ZL AAKPC ACGFS ACXQS ACYCR ADBBV ADDVE AENEX ALMA_UNASSIGNED_HOLDINGS ARCSS AVUZU BCNDV DU5 E3Z EBS EDO EJD GROUPED_DOAJ IPNFZ ITG ITH JDI KQ8 KVFHK MK~ ML~ O9- OK1 P5Y RIG RNS TR2 TUS WIN XSB AAYBS AAYXX CITATION 08R |
ID | FETCH-LOGICAL-c4296-97846f294ef636cba8beabff4144c02674ee1a1def382bc50be13ea56e0819d73 |
IEDL.DBID | DOA |
ISSN | 1225-6463 |
IngestDate | Tue Nov 21 21:46:49 EST 2023 Tue Oct 22 15:12:26 EDT 2024 Thu Sep 12 16:54:26 EDT 2024 Sat Aug 24 01:05:51 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4296-97846f294ef636cba8beabff4144c02674ee1a1def382bc50be13ea56e0819d73 |
Notes | Funding information This research was supported by the Institute for Information and communications Technology Promotion (IITP) grant funded by the Korea government (MSIT) (No. 2017‐0‐00066, ''Development of time‐space based spectrum engineering technologies for the preemptive using of frequency''). https://doi.org/10.4218/etrij.2019-0411 |
ORCID | 0000-0002-2062-1432 0000-0002-5851-0615 0000-0002-9663-9954 |
OpenAccessLink | https://doaj.org/article/6a4b61de2b924fe5b4a9c51a9e642485 |
PageCount | 11 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9622491 doaj_primary_oai_doaj_org_article_6a4b61de2b924fe5b4a9c51a9e642485 crossref_primary_10_4218_etrij_2019_0411 wiley_primary_10_4218_etrij_2019_0411_ETR212286 |
PublicationCentury | 2000 |
PublicationDate | December 2020 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationTitle | ETRI journal |
PublicationYear | 2020 |
Publisher | Electronics and Telecommunications Research Institute (ETRI) 한국전자통신연구원 |
Publisher_xml | – name: Electronics and Telecommunications Research Institute (ETRI) – name: 한국전자통신연구원 |
References | 2012; 60 1933; 21 1984; AP‐32 1974; 62 2010 1988; 36 2017; 65 1999; 48 2002; 44 2009 2008; 56 2018 2017 2015 1988; 40 2014 2013 1962; 52 2014; 62 2018; 66 1994; 43 1998; 46 e_1_2_6_10_1 Kim K.‐W. (e_1_2_6_23_1) 2018 (e_1_2_6_27_1) 2018 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 Lu J. (e_1_2_6_19_1) 2013 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 Jacob M. (e_1_2_6_16_1) 2012; 60 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_28_1 Soni S. (e_1_2_6_21_1) 2009 e_1_2_6_26_1 |
References_xml | – volume: 65 start-page: 6474 issue: 12 year: 2017 end-page: 6490 article-title: Small‐scale, local area, and transitional millimeter wave propagation for 5G communications publication-title: IEEE Trans. Antennas Propag. – start-page: 187 year: 2014 end-page: 191 – volume: 65 start-page: 6534 issue: 12 year: 2017 end-page: 6548 article-title: Channel characteristics and user body effects in an outdoor urban scenario at 15 and 28 GHz publication-title: IEEE Trans. Antennas Propag. – volume: 62 start-page: 2192 issue: 4 year: 2014 end-page: 2200 article-title: Site‐specific models of the received power for radio communication in urban street canyons publication-title: IEEE Trans. Antennas Propag – start-page: 1 year: 2017 end-page: 5 – volume: 52 start-page: 116 issue: 2 year: 1962 end-page: 130 article-title: Geometrical theory of diffraction publication-title: J. Opt. Soc. Am. – volume: 46 start-page: 292 issue: 2 year: 1998 end-page: 293 article-title: Building corner diffraction measurements and predictions using UTD publication-title: IEEE Trans. Antennas Propag. – volume: 44 start-page: 272 issue: 1 year: 2002 end-page: 273 article-title: Experimental validation of second‐order diffraction coefficients for computation of path‐loss past buildings publication-title: IEEE Trans. Electromagnetic Compatibility – year: 2018 – volume: 36 start-page: 1788 issue: 12 year: 1988 end-page: 1796 article-title: A theoretical model of UHF propagation in urban environments publication-title: IEEE Trans. Antennas Propag. – volume: 21 start-page: 427 year: 1933 end-page: 463 article-title: Ultra‐short wave propagation publication-title: Proc. Institute Radio Eng. – volume: 66 start-page: 1479 issue: 3 year: 2018 end-page: 1487 article-title: Cell coverage analysis of 28 GHz millimeter wave in urban microcell environment using 3‐D ray tracing publication-title: IEEE Trans. Antennas Propag. – volume: AP‐32 start-page: 70 issue: 1 year: 1984 end-page: 76 article-title: Finite conductivity uniform GTD versus knife edge diffraction in prediction of propagation path loss publication-title: IEEE Trans. Antennas Propag. – start-page: 1 year: 2009 end-page: 4 – volume: 43 start-page: 762 issue: 3 year: 1994 end-page: 766 article-title: Diffraction around corners and its effects on the microcell coverage area in urban and suburban environments at 900 MHz, 2 GHz, and 6 GHz publication-title: IEEE Trans. Veh. Technol. – volume: 65 start-page: 6491 issue: 12 year: 2017 end-page: 6504 article-title: Map‐based channel model for evaluation of 5G wireless communication systems publication-title: IEEE Trans. Antennas Propag. – volume: 40 start-page: 235 issue: 3 year: 1988 end-page: 239 article-title: Shielding effect of a thick screen with corrugations publication-title: IEEE Trans. Electromagnetic Compatibility – volume: 56 start-page: 1071 issue: 4 year: 2008 end-page: 1077 article-title: Propagation over clutter: physical stochastic model publication-title: IEEE Trans. Antennas Propag. – volume: 62 start-page: 3723 issue: 7 year: 2014 end-page: 3730 article-title: Measurements to validate the UTD triple diffraction coefficient publication-title: IEEE Trans. Antennas Propag. – start-page: 477 year: 2010 end-page: 480 – volume: 62 start-page: 1448 issue: 11 year: 1974 end-page: 1461 article-title: A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface publication-title: Proc. IEEE – start-page: 1238 year: 2013 end-page: 1243 – year: 2015 – start-page: 1034 year: 2015 end-page: 1036 – volume: 48 start-page: 255 issue: 1 year: 1999 end-page: 261 article-title: Comparative study of lateral profile knife‐edge diffraction and ray tracing technique using GTD in urban environment publication-title: IEEE Trans. Veh. Technol. – volume: 60 start-page: 833 issue: 3 year: 2012 end-page: 844 article-title: Diffraction in mm and sub‐mm wave indoor propagation channels publication-title: IEEE Trans. Antennas Propag. – ident: e_1_2_6_2_1 doi: 10.1109/8.14401 – ident: e_1_2_6_17_1 doi: 10.4108/icst.5gu.2014.258145 – ident: e_1_2_6_15_1 doi: 10.1109/TAP.2014.2318334 – ident: e_1_2_6_4_1 doi: 10.1109/TAP.2013.2297164 – ident: e_1_2_6_10_1 doi: 10.1109/TAP.2018.2797531 – ident: e_1_2_6_28_1 doi: 10.1109/ICTC.2015.7354731 – volume-title: Recommendation ITU‐R P.526‐14 year: 2018 ident: e_1_2_6_27_1 – ident: e_1_2_6_25_1 doi: 10.1364/JOSA.52.000116 – ident: e_1_2_6_14_1 doi: 10.1109/15.990736 – ident: e_1_2_6_7_1 – start-page: 1238 volume-title: Proc. IEEE Military Commun. Conf. year: 2013 ident: e_1_2_6_19_1 contributor: fullname: Lu J. – ident: e_1_2_6_26_1 doi: 10.1109/PROC.1974.9651 – ident: e_1_2_6_6_1 doi: 10.1109/ISAPE.2010.5696505 – ident: e_1_2_6_3_1 doi: 10.1109/25.312770 – ident: e_1_2_6_5_1 doi: 10.1109/TAP.2008.919163 – ident: e_1_2_6_22_1 doi: 10.1109/VTCFall.2017.8287881 – ident: e_1_2_6_11_1 doi: 10.1109/TAP.1984.1143189 – start-page: 1 volume-title: Proc. Int. Conf. Comput. Devices Commun year: 2009 ident: e_1_2_6_21_1 contributor: fullname: Soni S. – ident: e_1_2_6_20_1 doi: 10.1109/8.660975 – ident: e_1_2_6_9_1 doi: 10.1109/TAP.2017.2754443 – ident: e_1_2_6_8_1 doi: 10.1109/TAP.2017.2740959 – volume-title: Proc. Conf. Korean Institute Electromagn. Eng. Sci year: 2018 ident: e_1_2_6_23_1 contributor: fullname: Kim K.‐W. – ident: e_1_2_6_24_1 doi: 10.1109/JRPROC.1933.227639 – ident: e_1_2_6_12_1 doi: 10.1109/25.740101 – ident: e_1_2_6_13_1 doi: 10.1109/15.709421 – ident: e_1_2_6_18_1 doi: 10.1109/TAP.2017.2734159 – volume: 60 start-page: 833 issue: 3 year: 2012 ident: e_1_2_6_16_1 article-title: Diffraction in mm and sub‐mm wave indoor propagation channels publication-title: IEEE Trans. Antennas Propag. contributor: fullname: Jacob M. |
SSID | ssj0020458 |
Score | 2.3151653 |
Snippet | Measuring the diffraction loss for high frequencies, long distances, and large diffraction angles is difficult because of the high path loss. Securing a... |
SourceID | nrf doaj crossref wiley |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 827 |
SubjectTerms | 5G channel clutter loss diffraction loss millimeter‐wave channel path loss 전자/정보통신공학 |
Title | Millimeter‐wave diffraction‐loss model based on over‐rooftop propagation measurements |
URI | https://onlinelibrary.wiley.com/doi/abs/10.4218%2Fetrij.2019-0411 https://doaj.org/article/6a4b61de2b924fe5b4a9c51a9e642485 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002655969 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | ETRI Journal, 2020, 42(6), , pp.827-836 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T-QwELYQ1VEgOEAsj5OFKGiijR3Hccq7E2hBggKBhERh2c4Y8cqulgVafsL9xvslzDi7PCoaqkhOIlvfOJ7vi8czjO3Kxkvha5U5UZFACR6_uarMTGwEVLlXsqGzw8cnenCuji7Kiw-lvigmrEsP3AHX1055LRqQHpVChNIrV4dSuBqQOSvTZS_N65mYmkot2v4jqYWzNdNKF11SH4X-rE-Fqm4opos2BYT45I9S2n70Mu04fiarydscLLHFKU3kv7vhLbM5aH-yhQ_JA1fYJR3ju76ncJb_L_-e3RNwqnYy7k4qYNMd9sdTpRtOvqrhw5ZTwCbeQrocJ8MRx-UTF5RkHH7__rfwYZWdH-yf_R1k01IJWUCHojPUgkpHWSuIutDBO-PB-RgV6qVARaYUgHAIYyyM9KHMPYgCXKmBKEFTFWtsvh22sM541YiiMkEj4gYtFUzuHZjcBKik8Vr32N4MMDvqMmJYVBKErU3YWsLWErY99ocAfXuMUlmnBjSwnRrYfmXgHttBc9jbcJ3ep-vV0N6OLRL-Q1tr5CA19tRP1vpqRHb_7BSdtTR64zvGtsl-SNLfKbxli81Pxo-wjSRl4n-l-fgKue3l3g |
link.rule.ids | 315,783,787,867,2109,27936,27937,50826,50935 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BTtwwELWq5dD2gGhp1aVQrIoDl4iN4zjOERBoocCh2kWoPVi2M0ZbSoLSbbnyCXwjX8KMsyzQS9VTJCd2rBmPZ954ZszYhqicSF0pE5sWBFC8Q5kr8kSHKoVi4KSoKHf4-EQNx_LwLD97kgvT1YeYO9xIMuJ-TQJODmmScolqibg4bSc_KDiLvPuU3ruQ06lejy1sn46_jeewi44CCXbhyk2UVFlX4IcG2fpriGe6KZbwR41Tt-G54Ro1z_4SW5yZjHy74_Eb9gLqt-z1k0KCy-w7pfRNLim05e7m9tr-AU43n7Rd1gI2_cT_8XjrDSe9VfGm5hS8ia_QdA7T5orjVoqbS2QUv3z0HP56x8b7e6PdYTK7NiHxqFxUgrhQqiBKCUFlyjurHVgXgkTs5OnCKQmQ2rSCkGnhfD5wkGZgcwVkHlRF9p716qaGD4wXVZoV2isQTiPXvB44C3qgPRRCO6X6bPOBYOaqq45hEFUQbU2krSHaGqJtn-0QQeefUVnr2NC052YmJUZZ6RTOTDiEhQFyJ23p89SWgDBJ6rzPPiM7zIWfxP70PG_MRWvQ-D8wpUJ7pMQ_bUVu_WtGZm_0FRW30Grlv3uss5fD0fGROTo4-fKRvRIEwmOMyyrrTdvfsIaWytR9mi3Fe1NP5lQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYQSKg9VAVadWmhVtVDLxEbx3GcI68VlBahiq2q9mDZzhgtj2QVFrjyE_iN_BJmnGVbeql6iuTED814PPM582Dso6icSF0pE5sWBFC8Q5kr8kSHKoWi76SoKHb466HaG8rPP_JHb0KKhenyQ8wu3Egy4nlNAj6uAgm5RK1ETJy0o1PyzaLLfYruXUBbQ-AmX9j8Pvw5nKEu-hNIqAs3bqKkyrr8PjTIxl9DPFFNMYM_Kpy6DU_t1qh4Bi_Zi6nFyDc7Fi-xOaiX2fM_8giusF8U0Te6IM-W-9u7G3sNnAqftF3QAjad43w8Fr3hpLYq3tScfDfxFVrOYdKMOZ6keLZEPvGL3xeHl6_YcLB7vL2XTKsmJB51i0oQFkoVRCkhqEx5Z7UD60KQCJ081ZuSAKlNKwiZFs7nfQdpBjZXQNZBVWSv2Xzd1PCG8aJKs0J7BcJpZJrXfWdB97WHQminVI99eiSYGXfJMQyCCqKtibQ1RFtDtO2xLSLo7DPKah0bmvbETIXEKCudwpUJh6gwQO6kLX2e2hIQJUmd99gHZIc586PYn54njTlrDdr--6ZUaI6UONNG5Na_VmR2j7-h3hZarf53j_ds8WhnYL7sHx68Zc8EQfDo4fKOzU_aK1hDO2Xi1qc78QH-wOV9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Millimeter%E2%80%90wave+diffraction%E2%80%90loss+model+based+on+over%E2%80%90rooftop+propagation+measurements&rft.jtitle=ETRI+journal&rft.au=Kim%2C+Kyung%E2%80%90Won&rft.au=Kim%2C+Myung%E2%80%90Don&rft.au=Lee%2C+Juyul&rft.au=Park%2C+Jae%E2%80%90Joon&rft.date=2020-12-01&rft.issn=1225-6463&rft.eissn=2233-7326&rft.volume=42&rft.issue=6&rft.spage=827&rft.epage=836&rft_id=info:doi/10.4218%2Fetrij.2019-0411&rft.externalDBID=n%2Fa&rft.externalDocID=10_4218_etrij_2019_0411 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1225-6463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1225-6463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1225-6463&client=summon |