Millimeter‐wave diffraction‐loss model based on over‐rooftop propagation measurements

Measuring the diffraction loss for high frequencies, long distances, and large diffraction angles is difficult because of the high path loss. Securing a well‐controlled environment to avoid reflected waves also makes long‐range diffraction measurements challenging. Thus, the prediction of diffractio...

Full description

Saved in:
Bibliographic Details
Published inETRI journal Vol. 42; no. 6; pp. 827 - 836
Main Authors Kim, Kyung‐Won, Kim, Myung‐Don, Lee, Juyul, Park, Jae‐Joon, Yoon, Young Keun, Chong, Young Jun
Format Journal Article
LanguageEnglish
Published Electronics and Telecommunications Research Institute (ETRI) 01.12.2020
한국전자통신연구원
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Measuring the diffraction loss for high frequencies, long distances, and large diffraction angles is difficult because of the high path loss. Securing a well‐controlled environment to avoid reflected waves also makes long‐range diffraction measurements challenging. Thus, the prediction of diffraction loss at millimeter‐wave frequency bands relies on theoretical models, such as the knife‐edge diffraction (KED) and geometrical theory of diffraction (GTD) models; however, these models produce different diffraction losses even under the same environment. Our observations revealed that the KED model underestimated the diffraction loss in a large Fresnel‐Kirchhoff diffraction parameter environment. We collected power‐delay profiles when millimeter waves propagated over a building rooftop at millimeter‐wave frequency bands and calculated the diffraction losses from the measurements while eliminating the multipath effects. Comparisons between the measurements and the KED and GTD diffraction‐loss models are shown. Based on the measurements, an approximation model is also proposed that provides a simple method for calculating the diffraction loss using geometrical parameters.
AbstractList Measuring the diffraction loss for high frequencies, long distances, and large diffraction angles is difficult because of the high path loss. Securing a well‐controlled environment to avoid reflected waves also makes long‐range diffraction measurements challenging. Thus, the prediction of diffraction loss at millimeter‐wave frequency bands relies on theoretical models, such as the knife‐edge diffraction (KED) and geometrical theory of diffraction (GTD) models; however, these models produce different diffraction losses even under the same environment. Our observations revealed that the KED model underestimated the diffraction loss in a large Fresnel‐Kirchhoff diffraction parameter environment. We collected power‐delay profiles when millimeter waves propagated over a building rooftop at millimeter‐wave frequency bands and calculated the diffraction losses from the measurements while eliminating the multipath effects. Comparisons between the measurements and the KED and GTD diffraction‐loss models are shown. Based on the measurements, an approximation model is also proposed that provides a simple method for calculating the diffraction loss using geometrical parameters.
Measuring the diffraction loss for high frequencies, long distances, and large diffraction angles is difficult because of the high path loss. Securing a well‐controlled environment to avoid reflected waves also makes long‐range diffraction measurements challenging. Thus, the prediction of diffraction loss at millimeter‐wave frequency bands relies on theoretical models, such as the knife‐edge diffraction (KED) and geometrical theory of diffraction (GTD) models; however, these models produce different diffraction losses even under the same environment. Our observations revealed that the KED model underestimated the diffraction loss in a large Fresnel‐Kirchhoff diffraction parameter environment. We collected power‐delay profiles when millimeter waves propagated over a building rooftop at millimeter‐wave frequency bands and calculated the diffraction losses from the measurements while eliminating the multipath effects. Comparisons between the measurements and the KED and GTD diffraction‐loss models are shown. Based on the measurements, an approximation model is also proposed that provides a simple method for calculating the diffraction loss using geometrical parameters. KCI Citation Count: 1
Author Yoon, Young Keun
Chong, Young Jun
Park, Jae‐Joon
Kim, Kyung‐Won
Kim, Myung‐Don
Lee, Juyul
Author_xml – sequence: 1
  givenname: Kyung‐Won
  orcidid: 0000-0002-9663-9954
  surname: Kim
  fullname: Kim, Kyung‐Won
  email: kimkw@etri.re.kr
  organization: Electronics and Telecommunications Research Institute
– sequence: 2
  givenname: Myung‐Don
  surname: Kim
  fullname: Kim, Myung‐Don
  organization: Electronics and Telecommunications Research Institute
– sequence: 3
  givenname: Juyul
  orcidid: 0000-0002-5851-0615
  surname: Lee
  fullname: Lee, Juyul
  organization: Electronics and Telecommunications Research Institute
– sequence: 4
  givenname: Jae‐Joon
  surname: Park
  fullname: Park, Jae‐Joon
  organization: Electronics and Telecommunications Research Institute
– sequence: 5
  givenname: Young Keun
  orcidid: 0000-0002-2062-1432
  surname: Yoon
  fullname: Yoon, Young Keun
  organization: Electronics and Telecommunications Research Institute
– sequence: 6
  givenname: Young Jun
  surname: Chong
  fullname: Chong, Young Jun
  organization: Electronics and Telecommunications Research Institute
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002655969$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNqFkUFr3DAQhUVJoZuk51597cGJNJK11nEJabuQUgibUw9iJI8W7drWIjsJueUn5Df2l9TrLbn29ODx3huY75yd9aknxr4IfqVA1Nc05ri7Ai5MyZUQH9gCQMpyKUGfsYUAqEqttPzEzodhxzlwVdUL9vtnbNvY0Uj5z-vbMz5R0cQQMvoxpn6y2jQMRZcaaguHAzVF6ov0NKdzSmFMh-KQ0wG3eCwUHeHwmKmjfhwu2ceA7UCf_-kFe_h2u7n5Ud79-r6-Wd2VXoHRpVnWSgcwioKW2jusHaELQQmlPAe9VEQCRUNB1uB8xR0JSVhp4rUwzVJesK-n3T4Hu_fRJoyzbpPdZ7u636yt0QDKiCm7PmWbhDt7yLHD_DIXZiPlrcU8Rt-S1aicns6CM6ACVU6h8ZVAQ1qBqqtp6_q05fP0pEzhfU9we2RiZyb2yMQemUwNfWo8x5Ze_he3t5t7mMDVWv4F1ySXdg
CitedBy_id crossref_primary_10_1109_LWC_2024_3368273
crossref_primary_10_1109_ACCESS_2021_3062907
crossref_primary_10_1109_TVT_2022_3176622
Cites_doi 10.1109/8.14401
10.4108/icst.5gu.2014.258145
10.1109/TAP.2014.2318334
10.1109/TAP.2013.2297164
10.1109/TAP.2018.2797531
10.1109/ICTC.2015.7354731
10.1364/JOSA.52.000116
10.1109/15.990736
10.1109/PROC.1974.9651
10.1109/ISAPE.2010.5696505
10.1109/25.312770
10.1109/TAP.2008.919163
10.1109/VTCFall.2017.8287881
10.1109/TAP.1984.1143189
10.1109/8.660975
10.1109/TAP.2017.2754443
10.1109/TAP.2017.2740959
10.1109/JRPROC.1933.227639
10.1109/25.740101
10.1109/15.709421
10.1109/TAP.2017.2734159
ContentType Journal Article
Copyright 2020 ETRI
Copyright_xml – notice: 2020 ETRI
DBID AAYXX
CITATION
DOA
ACYCR
DOI 10.4218/etrij.2019-0411
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2233-7326
EndPage 836
ExternalDocumentID oai_kci_go_kr_ARTI_9622491
oai_doaj_org_article_6a4b61de2b924fe5b4a9c51a9e642485
10_4218_etrij_2019_0411
ETR212286
Genre article
GrantInformation_xml – fundername: Institute for Information and communications Technology Promotion
  funderid: 2017‐0‐00066
GroupedDBID -~X
.4S
.DC
.UV
0R~
1OC
29G
2WC
5GY
5VS
9ZL
AAKPC
ACGFS
ACXQS
ACYCR
ADBBV
ADDVE
AENEX
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AVUZU
BCNDV
DU5
E3Z
EBS
EDO
EJD
GROUPED_DOAJ
IPNFZ
ITG
ITH
JDI
KQ8
KVFHK
MK~
ML~
O9-
OK1
P5Y
RIG
RNS
TR2
TUS
WIN
XSB
AAYBS
AAYXX
CITATION
08R
ID FETCH-LOGICAL-c4296-97846f294ef636cba8beabff4144c02674ee1a1def382bc50be13ea56e0819d73
IEDL.DBID DOA
ISSN 1225-6463
IngestDate Tue Nov 21 21:46:49 EST 2023
Tue Oct 22 15:12:26 EDT 2024
Thu Sep 12 16:54:26 EDT 2024
Sat Aug 24 01:05:51 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4296-97846f294ef636cba8beabff4144c02674ee1a1def382bc50be13ea56e0819d73
Notes Funding information
This research was supported by the Institute for Information and communications Technology Promotion (IITP) grant funded by the Korea government (MSIT) (No. 2017‐0‐00066, ''Development of time‐space based spectrum engineering technologies for the preemptive using of frequency'').
https://doi.org/10.4218/etrij.2019-0411
ORCID 0000-0002-2062-1432
0000-0002-5851-0615
0000-0002-9663-9954
OpenAccessLink https://doaj.org/article/6a4b61de2b924fe5b4a9c51a9e642485
PageCount 11
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9622491
doaj_primary_oai_doaj_org_article_6a4b61de2b924fe5b4a9c51a9e642485
crossref_primary_10_4218_etrij_2019_0411
wiley_primary_10_4218_etrij_2019_0411_ETR212286
PublicationCentury 2000
PublicationDate December 2020
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationTitle ETRI journal
PublicationYear 2020
Publisher Electronics and Telecommunications Research Institute (ETRI)
한국전자통신연구원
Publisher_xml – name: Electronics and Telecommunications Research Institute (ETRI)
– name: 한국전자통신연구원
References 2012; 60
1933; 21
1984; AP‐32
1974; 62
2010
1988; 36
2017; 65
1999; 48
2002; 44
2009
2008; 56
2018
2017
2015
1988; 40
2014
2013
1962; 52
2014; 62
2018; 66
1994; 43
1998; 46
e_1_2_6_10_1
Kim K.‐W. (e_1_2_6_23_1) 2018
(e_1_2_6_27_1) 2018
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
Lu J. (e_1_2_6_19_1) 2013
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
Jacob M. (e_1_2_6_16_1) 2012; 60
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_28_1
Soni S. (e_1_2_6_21_1) 2009
e_1_2_6_26_1
References_xml – volume: 65
  start-page: 6474
  issue: 12
  year: 2017
  end-page: 6490
  article-title: Small‐scale, local area, and transitional millimeter wave propagation for 5G communications
  publication-title: IEEE Trans. Antennas Propag.
– start-page: 187
  year: 2014
  end-page: 191
– volume: 65
  start-page: 6534
  issue: 12
  year: 2017
  end-page: 6548
  article-title: Channel characteristics and user body effects in an outdoor urban scenario at 15 and 28 GHz
  publication-title: IEEE Trans. Antennas Propag.
– volume: 62
  start-page: 2192
  issue: 4
  year: 2014
  end-page: 2200
  article-title: Site‐specific models of the received power for radio communication in urban street canyons
  publication-title: IEEE Trans. Antennas Propag
– start-page: 1
  year: 2017
  end-page: 5
– volume: 52
  start-page: 116
  issue: 2
  year: 1962
  end-page: 130
  article-title: Geometrical theory of diffraction
  publication-title: J. Opt. Soc. Am.
– volume: 46
  start-page: 292
  issue: 2
  year: 1998
  end-page: 293
  article-title: Building corner diffraction measurements and predictions using UTD
  publication-title: IEEE Trans. Antennas Propag.
– volume: 44
  start-page: 272
  issue: 1
  year: 2002
  end-page: 273
  article-title: Experimental validation of second‐order diffraction coefficients for computation of path‐loss past buildings
  publication-title: IEEE Trans. Electromagnetic Compatibility
– year: 2018
– volume: 36
  start-page: 1788
  issue: 12
  year: 1988
  end-page: 1796
  article-title: A theoretical model of UHF propagation in urban environments
  publication-title: IEEE Trans. Antennas Propag.
– volume: 21
  start-page: 427
  year: 1933
  end-page: 463
  article-title: Ultra‐short wave propagation
  publication-title: Proc. Institute Radio Eng.
– volume: 66
  start-page: 1479
  issue: 3
  year: 2018
  end-page: 1487
  article-title: Cell coverage analysis of 28 GHz millimeter wave in urban microcell environment using 3‐D ray tracing
  publication-title: IEEE Trans. Antennas Propag.
– volume: AP‐32
  start-page: 70
  issue: 1
  year: 1984
  end-page: 76
  article-title: Finite conductivity uniform GTD versus knife edge diffraction in prediction of propagation path loss
  publication-title: IEEE Trans. Antennas Propag.
– start-page: 1
  year: 2009
  end-page: 4
– volume: 43
  start-page: 762
  issue: 3
  year: 1994
  end-page: 766
  article-title: Diffraction around corners and its effects on the microcell coverage area in urban and suburban environments at 900 MHz, 2 GHz, and 6 GHz
  publication-title: IEEE Trans. Veh. Technol.
– volume: 65
  start-page: 6491
  issue: 12
  year: 2017
  end-page: 6504
  article-title: Map‐based channel model for evaluation of 5G wireless communication systems
  publication-title: IEEE Trans. Antennas Propag.
– volume: 40
  start-page: 235
  issue: 3
  year: 1988
  end-page: 239
  article-title: Shielding effect of a thick screen with corrugations
  publication-title: IEEE Trans. Electromagnetic Compatibility
– volume: 56
  start-page: 1071
  issue: 4
  year: 2008
  end-page: 1077
  article-title: Propagation over clutter: physical stochastic model
  publication-title: IEEE Trans. Antennas Propag.
– volume: 62
  start-page: 3723
  issue: 7
  year: 2014
  end-page: 3730
  article-title: Measurements to validate the UTD triple diffraction coefficient
  publication-title: IEEE Trans. Antennas Propag.
– start-page: 477
  year: 2010
  end-page: 480
– volume: 62
  start-page: 1448
  issue: 11
  year: 1974
  end-page: 1461
  article-title: A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface
  publication-title: Proc. IEEE
– start-page: 1238
  year: 2013
  end-page: 1243
– year: 2015
– start-page: 1034
  year: 2015
  end-page: 1036
– volume: 48
  start-page: 255
  issue: 1
  year: 1999
  end-page: 261
  article-title: Comparative study of lateral profile knife‐edge diffraction and ray tracing technique using GTD in urban environment
  publication-title: IEEE Trans. Veh. Technol.
– volume: 60
  start-page: 833
  issue: 3
  year: 2012
  end-page: 844
  article-title: Diffraction in mm and sub‐mm wave indoor propagation channels
  publication-title: IEEE Trans. Antennas Propag.
– ident: e_1_2_6_2_1
  doi: 10.1109/8.14401
– ident: e_1_2_6_17_1
  doi: 10.4108/icst.5gu.2014.258145
– ident: e_1_2_6_15_1
  doi: 10.1109/TAP.2014.2318334
– ident: e_1_2_6_4_1
  doi: 10.1109/TAP.2013.2297164
– ident: e_1_2_6_10_1
  doi: 10.1109/TAP.2018.2797531
– ident: e_1_2_6_28_1
  doi: 10.1109/ICTC.2015.7354731
– volume-title: Recommendation ITU‐R P.526‐14
  year: 2018
  ident: e_1_2_6_27_1
– ident: e_1_2_6_25_1
  doi: 10.1364/JOSA.52.000116
– ident: e_1_2_6_14_1
  doi: 10.1109/15.990736
– ident: e_1_2_6_7_1
– start-page: 1238
  volume-title: Proc. IEEE Military Commun. Conf.
  year: 2013
  ident: e_1_2_6_19_1
  contributor:
    fullname: Lu J.
– ident: e_1_2_6_26_1
  doi: 10.1109/PROC.1974.9651
– ident: e_1_2_6_6_1
  doi: 10.1109/ISAPE.2010.5696505
– ident: e_1_2_6_3_1
  doi: 10.1109/25.312770
– ident: e_1_2_6_5_1
  doi: 10.1109/TAP.2008.919163
– ident: e_1_2_6_22_1
  doi: 10.1109/VTCFall.2017.8287881
– ident: e_1_2_6_11_1
  doi: 10.1109/TAP.1984.1143189
– start-page: 1
  volume-title: Proc. Int. Conf. Comput. Devices Commun
  year: 2009
  ident: e_1_2_6_21_1
  contributor:
    fullname: Soni S.
– ident: e_1_2_6_20_1
  doi: 10.1109/8.660975
– ident: e_1_2_6_9_1
  doi: 10.1109/TAP.2017.2754443
– ident: e_1_2_6_8_1
  doi: 10.1109/TAP.2017.2740959
– volume-title: Proc. Conf. Korean Institute Electromagn. Eng. Sci
  year: 2018
  ident: e_1_2_6_23_1
  contributor:
    fullname: Kim K.‐W.
– ident: e_1_2_6_24_1
  doi: 10.1109/JRPROC.1933.227639
– ident: e_1_2_6_12_1
  doi: 10.1109/25.740101
– ident: e_1_2_6_13_1
  doi: 10.1109/15.709421
– ident: e_1_2_6_18_1
  doi: 10.1109/TAP.2017.2734159
– volume: 60
  start-page: 833
  issue: 3
  year: 2012
  ident: e_1_2_6_16_1
  article-title: Diffraction in mm and sub‐mm wave indoor propagation channels
  publication-title: IEEE Trans. Antennas Propag.
  contributor:
    fullname: Jacob M.
SSID ssj0020458
Score 2.3151653
Snippet Measuring the diffraction loss for high frequencies, long distances, and large diffraction angles is difficult because of the high path loss. Securing a...
SourceID nrf
doaj
crossref
wiley
SourceType Open Website
Aggregation Database
Publisher
StartPage 827
SubjectTerms 5G channel
clutter loss
diffraction loss
millimeter‐wave channel
path loss
전자/정보통신공학
Title Millimeter‐wave diffraction‐loss model based on over‐rooftop propagation measurements
URI https://onlinelibrary.wiley.com/doi/abs/10.4218%2Fetrij.2019-0411
https://doaj.org/article/6a4b61de2b924fe5b4a9c51a9e642485
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002655969
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX ETRI Journal, 2020, 42(6), , pp.827-836
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T-QwELYQ1VEgOEAsj5OFKGiijR3Hccq7E2hBggKBhERh2c4Y8cqulgVafsL9xvslzDi7PCoaqkhOIlvfOJ7vi8czjO3Kxkvha5U5UZFACR6_uarMTGwEVLlXsqGzw8cnenCuji7Kiw-lvigmrEsP3AHX1055LRqQHpVChNIrV4dSuBqQOSvTZS_N65mYmkot2v4jqYWzNdNKF11SH4X-rE-Fqm4opos2BYT45I9S2n70Mu04fiarydscLLHFKU3kv7vhLbM5aH-yhQ_JA1fYJR3ju76ncJb_L_-e3RNwqnYy7k4qYNMd9sdTpRtOvqrhw5ZTwCbeQrocJ8MRx-UTF5RkHH7__rfwYZWdH-yf_R1k01IJWUCHojPUgkpHWSuIutDBO-PB-RgV6qVARaYUgHAIYyyM9KHMPYgCXKmBKEFTFWtsvh22sM541YiiMkEj4gYtFUzuHZjcBKik8Vr32N4MMDvqMmJYVBKErU3YWsLWErY99ocAfXuMUlmnBjSwnRrYfmXgHttBc9jbcJ3ep-vV0N6OLRL-Q1tr5CA19tRP1vpqRHb_7BSdtTR64zvGtsl-SNLfKbxli81Pxo-wjSRl4n-l-fgKue3l3g
link.rule.ids 315,783,787,867,2109,27936,27937,50826,50935
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BTtwwELWq5dD2gGhp1aVQrIoDl4iN4zjOERBoocCh2kWoPVi2M0ZbSoLSbbnyCXwjX8KMsyzQS9VTJCd2rBmPZ954ZszYhqicSF0pE5sWBFC8Q5kr8kSHKoVi4KSoKHf4-EQNx_LwLD97kgvT1YeYO9xIMuJ-TQJODmmScolqibg4bSc_KDiLvPuU3ruQ06lejy1sn46_jeewi44CCXbhyk2UVFlX4IcG2fpriGe6KZbwR41Tt-G54Ro1z_4SW5yZjHy74_Eb9gLqt-z1k0KCy-w7pfRNLim05e7m9tr-AU43n7Rd1gI2_cT_8XjrDSe9VfGm5hS8ia_QdA7T5orjVoqbS2QUv3z0HP56x8b7e6PdYTK7NiHxqFxUgrhQqiBKCUFlyjurHVgXgkTs5OnCKQmQ2rSCkGnhfD5wkGZgcwVkHlRF9p716qaGD4wXVZoV2isQTiPXvB44C3qgPRRCO6X6bPOBYOaqq45hEFUQbU2krSHaGqJtn-0QQeefUVnr2NC052YmJUZZ6RTOTDiEhQFyJ23p89SWgDBJ6rzPPiM7zIWfxP70PG_MRWvQ-D8wpUJ7pMQ_bUVu_WtGZm_0FRW30Grlv3uss5fD0fGROTo4-fKRvRIEwmOMyyrrTdvfsIaWytR9mi3Fe1NP5lQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYQSKg9VAVadWmhVtVDLxEbx3GcI68VlBahiq2q9mDZzhgtj2QVFrjyE_iN_BJmnGVbeql6iuTED814PPM582Dso6icSF0pE5sWBFC8Q5kr8kSHKoWi76SoKHb466HaG8rPP_JHb0KKhenyQ8wu3Egy4nlNAj6uAgm5RK1ETJy0o1PyzaLLfYruXUBbQ-AmX9j8Pvw5nKEu-hNIqAs3bqKkyrr8PjTIxl9DPFFNMYM_Kpy6DU_t1qh4Bi_Zi6nFyDc7Fi-xOaiX2fM_8giusF8U0Te6IM-W-9u7G3sNnAqftF3QAjad43w8Fr3hpLYq3tScfDfxFVrOYdKMOZ6keLZEPvGL3xeHl6_YcLB7vL2XTKsmJB51i0oQFkoVRCkhqEx5Z7UD60KQCJ081ZuSAKlNKwiZFs7nfQdpBjZXQNZBVWSv2Xzd1PCG8aJKs0J7BcJpZJrXfWdB97WHQminVI99eiSYGXfJMQyCCqKtibQ1RFtDtO2xLSLo7DPKah0bmvbETIXEKCudwpUJh6gwQO6kLX2e2hIQJUmd99gHZIc586PYn54njTlrDdr--6ZUaI6UONNG5Na_VmR2j7-h3hZarf53j_ds8WhnYL7sHx68Zc8EQfDo4fKOzU_aK1hDO2Xi1qc78QH-wOV9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Millimeter%E2%80%90wave+diffraction%E2%80%90loss+model+based+on+over%E2%80%90rooftop+propagation+measurements&rft.jtitle=ETRI+journal&rft.au=Kim%2C+Kyung%E2%80%90Won&rft.au=Kim%2C+Myung%E2%80%90Don&rft.au=Lee%2C+Juyul&rft.au=Park%2C+Jae%E2%80%90Joon&rft.date=2020-12-01&rft.issn=1225-6463&rft.eissn=2233-7326&rft.volume=42&rft.issue=6&rft.spage=827&rft.epage=836&rft_id=info:doi/10.4218%2Fetrij.2019-0411&rft.externalDBID=n%2Fa&rft.externalDocID=10_4218_etrij_2019_0411
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1225-6463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1225-6463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1225-6463&client=summon