Controlling amyloid fibril formation by partial stirring

ABSTRACT Many proteins undergoe self‐assembly into fibrillar structures known as amyloid fibrils. During the self‐assembly process, related structures known as spherulites can be formed. Herein we report a facile method where the balance between amyloid fibrils and spherulites can be controlled by s...

Full description

Saved in:
Bibliographic Details
Published inBiopolymers Vol. 105; no. 5; pp. 249 - 259
Main Authors Bäcklund, Fredrik G., Pallbo, Jon, Solin, Niclas, Blacklow, Stephen
Format Journal Article
LanguageEnglish
Published United States 01.05.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Many proteins undergoe self‐assembly into fibrillar structures known as amyloid fibrils. During the self‐assembly process, related structures known as spherulites can be formed. Herein we report a facile method where the balance between amyloid fibrils and spherulites can be controlled by stirring of the reaction mixture during the initial stages of the self‐assembly process. Moreover, we report how this methodology can be used to prepare non‐covalently functionalized amyloid fibrils. By stirring the reaction mixture continuously or for a limited time during the lag phase, the fibril length, and hence the propensity to form liquid crystalline phases, can be influenced. This phenomena is utilized in order to prepare films consisting of aligned protein fibrils incorporating the laser dye Nile red. The resulting films display polarized Nile red fluorescence. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 249–259, 2016.
AbstractList Many proteins undergoe self-assembly into fibrillar structures known as amyloid fibrils. During the self-assembly process, related structures known as spherulites can be formed. Herein we report a facile method where the balance between amyloid fibrils and spherulites can be controlled by stirring of the reaction mixture during the initial stages of the self-assembly process. Moreover, we report how this methodology can be used to prepare non-covalently functionalized amyloid fibrils. By stirring the reaction mixture continuously or for a limited time during the lag phase, the fibril length, and hence the propensity to form liquid crystalline phases, can be influenced. This phenomena is utilized in order to prepare films consisting of aligned protein fibrils incorporating the laser dye Nile red. The resulting films display polarized Nile red fluorescence. Biopolymers 105: 249-259, 2016.
Many proteins undergoe self-assembly into fibrillar structures known as amyloid fibrils. During the self-assembly process, related structures known as spherulites can be formed. Herein we report a facile method where the balance between amyloid fibrils and spherulites can be controlled by stirring of the reaction mixture during the initial stages of the self-assembly process. Moreover, we report how this methodology can be used to prepare non-covalently functionalized amyloid fibrils. By stirring the reaction mixture continuously or for a limited time during the lag phase, the fibril length, and hence the propensity to form liquid crystalline phases, can be influenced. This phenomena is utilized in order to prepare films consisting of aligned protein fibrils incorporating the laser dye Nile red. The resulting films display polarized Nile red fluorescence.
Many proteins undergoes self-assembly into fibrillar structures known as amyloid fibrils. During the self-assembly process related structures, known as spherulites, can be formed. Herein we report a facile method where the balance between amyloid fibrils and spherulites can be controlled by stirring of the reaction mixture during the initial stages of the self-assembly process. Moreover, we report how this methodology can be used to prepare non-covalently functionalized amyloid fibrils. By stirring the reaction mixture continuously or for a limited time during the lag phase the fibril length, and hence the propensity to form liquid crystalline phases, can be influenced. This phenomena is utilized by preparing films consisting of aligned protein fibrils incorporating the laser dye Nile red. The resulting films display polarized Nile red fluorescence.
ABSTRACT Many proteins undergoe self‐assembly into fibrillar structures known as amyloid fibrils. During the self‐assembly process, related structures known as spherulites can be formed. Herein we report a facile method where the balance between amyloid fibrils and spherulites can be controlled by stirring of the reaction mixture during the initial stages of the self‐assembly process. Moreover, we report how this methodology can be used to prepare non‐covalently functionalized amyloid fibrils. By stirring the reaction mixture continuously or for a limited time during the lag phase, the fibril length, and hence the propensity to form liquid crystalline phases, can be influenced. This phenomena is utilized in order to prepare films consisting of aligned protein fibrils incorporating the laser dye Nile red. The resulting films display polarized Nile red fluorescence. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 249–259, 2016.
Author Solin, Niclas
Bäcklund, Fredrik G.
Pallbo, Jon
Blacklow, Stephen
Author_xml – sequence: 1
  givenname: Fredrik G.
  surname: Bäcklund
  fullname: Bäcklund, Fredrik G.
  organization: Linköping University
– sequence: 2
  givenname: Jon
  surname: Pallbo
  fullname: Pallbo, Jon
  organization: Linköping University
– sequence: 3
  givenname: Niclas
  surname: Solin
  fullname: Solin, Niclas
  organization: Linköping University
– sequence: 4
  givenname: Stephen
  surname: Blacklow
  fullname: Blacklow, Stephen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26756611$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-121017$$DView record from Swedish Publication Index
BookMark eNqN0UtLxDAUBeAgio6PhX9AutRF9ebRpF3q-IQBXajbkEwTiaRNTVpk_r3Vju5EV3fzcTjcs4s229AahA4xnGIAcqZdd0pICXQDzTBUIgdSkk00AwCe04IUO2g3pVcAxiiGbbRDuCg4x3iGynlo-xi8d-1LppqVD67OrNPR-cyG2KjehTbTq6xTsXfKZ6l3MY54H21Z5ZM5WN899HR99Ti_zRf3N3fz80W-ZKSieV0aS7HGzJZ1zQpmzWdBzLVWhNe6KjnRSlFbQw1Mc6uIsFYAscJQJQSheyifctO76QYtu-gaFVcyKCcv3fO5DPFFejdITDBgMfrjyXcxvA0m9bJxaWm8V60JQ5K4HN9QccGqv6kQnLOCU_wPygXwCgoY6clElzGkFI39qYxBfs4lx7nk11yjPVrHDrox9Y_83mcEZxN4d96sfk-SF3cPU-QHJoafXQ
CitedBy_id crossref_primary_10_1039_D1RA06878D
crossref_primary_10_1002_admi_202200926
crossref_primary_10_1021_acs_biochem_7b00243
crossref_primary_10_1021_acsapm_1c00382
crossref_primary_10_1002_bip_23342
crossref_primary_10_1039_D1NR05571B
crossref_primary_10_1021_acs_jpclett_8b03143
crossref_primary_10_1016_j_bbrc_2020_08_088
crossref_primary_10_1002_cssc_202102097
crossref_primary_10_1080_17518253_2022_2102941
crossref_primary_10_3390_ma15030708
crossref_primary_10_1007_s10853_018_2461_7
crossref_primary_10_1128_AEM_01149_21
crossref_primary_10_1364_BOE_8_000743
Cites_doi 10.1038/nphoton.2012.264
10.1002/bip.21709
10.1021/ma202157h
10.1039/b927489h
10.1529/biophysj.104.051896
10.1039/c0mb00236d
10.1146/annurev.biochem.75.101304.123901
10.1073/pnas.1208228109
10.1016/j.cep.2012.03.004
10.1002/bip.21646
10.1016/j.bbrc.2012.02.077
10.1039/c2sm26946e
10.1021/co5001212
10.1134/S0006297912110028
10.1073/pnas.0405933101
10.1016/j.colsurfb.2011.09.018
10.1385/ABAB:84-86:1-9:761
10.1021/la9021432
10.1002/adma.201100529
10.1007/s10853-011-5363-5
10.1073/pnas.88.21.9377
10.1038/318162a0
10.1016/j.tibs.2007.03.003
10.1039/C1FO10163C
10.1021/nl1012008
10.1038/nnano.2010.26
10.1002/ijch.201100113
10.1021/ja01206a030
10.1063/1.4905782
10.1002/bit.260400805
10.1039/c0cs00032a
10.1038/nnano.2011.102
10.1080/15421400701683956
10.1039/C3NR05752F
10.1002/adfm.201103054
10.1016/j.chemphys.2014.10.015
10.1002/pi.4395
10.1002/chem.201000146
10.1074/jbc.M504298200
10.1002/chir.22335
10.1042/BST0370682
10.1039/C4CP05563B
10.1002/9783527654185
10.1016/j.tifs.2014.02.003
10.1021/jp805257n
10.1063/1.4748120
10.1039/C4TC00692E
10.1002/(SICI)1521-4095(200001)12:1<9::AID-ADMA9>3.0.CO;2-6
10.1021/bi002555c
ContentType Journal Article
Copyright 2016 Wiley Periodicals, Inc.
Copyright_xml – notice: 2016 Wiley Periodicals, Inc.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7QO
8FD
FR3
P64
7U5
L7M
ADTPV
AOWAS
DG8
DOI 10.1002/bip.22803
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
SwePub
SwePub Articles
SWEPUB Linköpings universitet
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList Technology Research Database
MEDLINE

CrossRef

MEDLINE - Academic
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1097-0282
EndPage 259
ExternalDocumentID oai_DiVA_org_liu_121017
10_1002_bip_22803
26756611
BIP22803
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University (Faculty Grant SFO‐Mat‐Liu) (to N.S.)
  funderid: 2009‐00971
– fundername: Knut and Alice Wallenberg foundation
GroupedDBID .GA
.Y3
05W
10A
1OB
1OC
31~
4.4
4ZD
51W
51X
52N
52O
52P
52T
52W
52X
7PT
930
A03
AANLZ
AASGY
AAXRX
ABJNI
ACAHQ
ACCZN
ACXBN
ADOZA
AEUYR
AFBPY
AFZJQ
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ATUGU
BRXPI
BY8
DCZOG
DRFUL
DRSTM
G-S
GNP
GODZA
HF~
HHZ
LATKE
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
P2W
P4D
QB0
RWI
SUPJJ
UB1
WIH
WIK
WJL
WQJ
WRC
XG1
XV2
ZZTAW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7QO
8FD
FR3
P64
7U5
L7M
ADTPV
AOWAS
DG8
ID FETCH-LOGICAL-c4293-d8ef31b14f8dd454fe109716bba26db9862baa3fd0d04b6fa27ff702f7e3a7723
IEDL.DBID DR2
ISSN 0006-3525
1097-0282
IngestDate Sat Aug 24 00:18:48 EDT 2024
Thu Apr 11 21:34:08 EDT 2024
Fri Apr 12 02:21:13 EDT 2024
Thu Apr 11 19:38:05 EDT 2024
Fri Aug 23 02:38:21 EDT 2024
Thu May 23 23:22:50 EDT 2024
Sat Aug 24 01:08:55 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords self-assembly
mechanochemistry
insulin
fluorescence
amyloid fibrils
Language English
License 2016 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4293-d8ef31b14f8dd454fe109716bba26db9862baa3fd0d04b6fa27ff702f7e3a7723
Notes This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of any preprints from the past two calendar years by emailing the Biopolymers editorial office at
.
biopolymers@wiley.com
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26756611
PQID 1767069050
PQPubID 23479
PageCount 11
ParticipantIDs swepub_primary_oai_DiVA_org_liu_121017
proquest_miscellaneous_1800496749
proquest_miscellaneous_1776645631
proquest_miscellaneous_1767069050
crossref_primary_10_1002_bip_22803
pubmed_primary_26756611
wiley_primary_10_1002_bip_22803_BIP22803
PublicationCentury 2000
PublicationDate May 2016
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: May 2016
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biopolymers
PublicationTitleAlternate Biopolymers
PublicationYear 2016
References 2010; 12
2010; 10
2010; 16
2006; 75
2013; 68
2013; 62
2011; 97
2014; 26
2015; 106
2007; 32
2001; 40
2012; 52
2013; 9
2010; 26
2014; 2
2000; 12
1991; 88
2012; 419
2014; 16
2011; 23
2008; 112
2010; 5
2012; 22
2014; 6
2014; 445
1992; 40
2004; 101
2015; 17
2012; 101
2010; 39
2011; 6
2012; 77
1946; 68
2005; 88
2011; 7
2012; 109
2007; 477
2005; 280
2012; 3
2000; 8486
1985; 318
2011; 95
2014; 37
2011; 46
2013
2012; 6
2012; 89
2012; 45
2009; 37
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_29_1
e_1_2_5_42_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_3_1
e_1_2_5_19_1
e_1_2_5_30_1
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_18_1
e_1_2_5_31_1
e_1_2_5_50_1
References_xml – volume: 75
  start-page: 333
  year: 2006
  end-page: 366
  publication-title: Annu Rev Biochem
– volume: 37
  start-page: 42
  year: 2014
  end-page: 50
  publication-title: Trends Food Sci Technol
– volume: 89
  start-page: 216
  year: 2012
  end-page: 222
  publication-title: Colloids Surf B
– volume: 9
  start-page: 2852
  year: 2013
  end-page: 2857
  publication-title: Soft Matter
– volume: 101
  start-page: 091110
  year: 2012
  publication-title: Appl Phys Lett
– volume: 16
  start-page: 721
  year: 2014
  end-page: 729
  publication-title: ACS Comb Sci
– volume: 419
  start-page: 682
  year: 2012
  end-page: 686
  publication-title: Biochem Biophys Res Commun
– volume: 10
  start-page: 2225
  year: 2010
  end-page: 2230
  publication-title: Nano Lett
– volume: 477
  start-page: 517
  year: 2007
  end-page: 535
  publication-title: Mol Cryst Liq Cryst
– volume: 445
  start-page: 1
  year: 2014
  end-page: 4
  publication-title: Chem Phys
– volume: 26
  start-page: 504
  year: 2010
  end-page: 514
  publication-title: Langmuir
– volume: 7
  start-page: 1232
  year: 2011
  end-page: 1240
  publication-title: Mol BioSyst
– volume: 68
  start-page: 247
  year: 1946
  end-page: 250
  publication-title: J Am Chem Soc
– volume: 77
  start-page: 1237
  year: 2012
  end-page: 1247
  publication-title: Biochemistry (Moscow)
– volume: 68
  start-page: 38
  year: 2013
  end-page: 44
  publication-title: Chem Eng Process
– volume: 40
  start-page: 895
  year: 1992
  end-page: 903
  publication-title: Biotechnol Bioeng
– volume: 106
  start-page: 123702
  year: 2015
  publication-title: Appl Phys Lett
– volume: 280
  start-page: 42669
  year: 2005
  end-page: 42675
  publication-title: J Biol Chem
– volume: 95
  start-page: 733
  year: 2011
  end-page: 745
  publication-title: Biopolymers
– volume: 37
  start-page: 682
  year: 2009
  end-page: 686
  publication-title: Biochem Soc Trans
– volume: 12
  start-page: 8016
  year: 2010
  end-page: 8023
  publication-title: Phys Chem Chem Phys
– volume: 12
  start-page: 9
  year: 2000
  end-page: 20
  publication-title: Adv Mater
– volume: 32
  start-page: 217
  year: 2007
  end-page: 224
  publication-title: Trends Biochem Sci
– volume: 26
  start-page: 580
  year: 2014
  end-page: 587
  publication-title: Chirality
– volume: 6
  start-page: 1629
  year: 2014
  end-page: 1634
  publication-title: Nanoscale
– volume: 22
  start-page: 3424
  year: 2012
  end-page: 3428
  publication-title: Adv Funct Mater
– volume: 88
  start-page: 9377
  year: 1991
  end-page: 9381
  publication-title: Proc Natl Acad Sci USA
– volume: 23
  start-page: 4261
  year: 2011
  end-page: 4264
  publication-title: Adv Mater
– volume: 2
  start-page: 7811
  year: 2014
  end-page: 7822
  publication-title: N. J Mater Chem C
– volume: 17
  start-page: 7606
  year: 2015
  end-page: 7618
  publication-title: Phys Chem Chem Phys
– volume: 52
  start-page: 529
  year: 2012
  end-page: 539
  publication-title: Isr J Chem
– volume: 3
  start-page: 221
  year: 2012
  end-page: 227
  publication-title: Food Funct
– volume: 6
  start-page: 469
  year: 2011
  end-page: 479
  publication-title: J Nat Nanotechnol
– volume: 39
  start-page: 3464
  year: 2010
  end-page: 3479
  publication-title: Chem Soc Rev
– volume: 16
  start-page: 4190
  year: 2010
  end-page: 4195
  publication-title: Chem Eur J
– volume: 101
  start-page: 14420
  year: 2004
  end-page: 14424
  publication-title: Proc Nat Acad Sci USA
– volume: 8486
  start-page: 761
  year: 2000
  end-page: 768
  publication-title: Appl Biochem Biotechnol
– volume: 112
  start-page: 16249
  year: 2008
  end-page: 16252
  publication-title: J Phys Chem Lett B
– volume: 40
  start-page: 6036
  year: 2001
  end-page: 6046
  publication-title: Biochemistry
– volume: 88
  start-page: 2013
  year: 2005
  end-page: 2021
  publication-title: Biophys J
– volume: 45
  start-page: 1137
  year: 2012
  end-page: 1150
  publication-title: Macromolecules
– volume: 46
  start-page: 3687
  year: 2011
  end-page: 3692
  publication-title: O. J Mater Sci
– volume: 318
  start-page: 162
  year: 1985
  end-page: 163
  publication-title: Nature
– volume: 97
  start-page: 123
  year: 2011
  end-page: 133
  publication-title: Biopolymers
– volume: 62
  start-page: 22
  year: 2013
  end-page: 32
  publication-title: Polym Int
– volume: 109
  start-page: 14446
  year: 2012
  publication-title: Proc Natl Acad Sci USA
– volume: 6
  start-page: 818
  year: 2012
  end-page: 823
  publication-title: Nat Photon
– year: 2013
– volume: 5
  start-page: 204
  year: 2010
  end-page: 207
  publication-title: Nat Nanotechnol
– ident: e_1_2_5_47_1
  doi: 10.1038/nphoton.2012.264
– ident: e_1_2_5_14_1
  doi: 10.1002/bip.21709
– ident: e_1_2_5_38_1
  doi: 10.1021/ma202157h
– ident: e_1_2_5_40_1
  doi: 10.1039/b927489h
– ident: e_1_2_5_18_1
  doi: 10.1529/biophysj.104.051896
– ident: e_1_2_5_41_1
  doi: 10.1039/c0mb00236d
– ident: e_1_2_5_2_1
  doi: 10.1146/annurev.biochem.75.101304.123901
– ident: e_1_2_5_16_1
  doi: 10.1073/pnas.1208228109
– ident: e_1_2_5_43_1
  doi: 10.1016/j.cep.2012.03.004
– ident: e_1_2_5_34_1
  doi: 10.1002/bip.21646
– ident: e_1_2_5_26_1
  doi: 10.1016/j.bbrc.2012.02.077
– ident: e_1_2_5_35_1
  doi: 10.1039/c2sm26946e
– ident: e_1_2_5_28_1
  doi: 10.1021/co5001212
– ident: e_1_2_5_13_1
  doi: 10.1134/S0006297912110028
– ident: e_1_2_5_17_1
  doi: 10.1073/pnas.0405933101
– ident: e_1_2_5_19_1
  doi: 10.1016/j.colsurfb.2011.09.018
– ident: e_1_2_5_33_1
  doi: 10.1385/ABAB:84-86:1-9:761
– ident: e_1_2_5_37_1
  doi: 10.1021/la9021432
– ident: e_1_2_5_48_1
  doi: 10.1002/adma.201100529
– ident: e_1_2_5_8_1
  doi: 10.1007/s10853-011-5363-5
– ident: e_1_2_5_32_1
  doi: 10.1073/pnas.88.21.9377
– ident: e_1_2_5_39_1
  doi: 10.1038/318162a0
– ident: e_1_2_5_4_1
  doi: 10.1016/j.tibs.2007.03.003
– ident: e_1_2_5_10_1
  doi: 10.1039/C1FO10163C
– ident: e_1_2_5_25_1
  doi: 10.1021/nl1012008
– ident: e_1_2_5_7_1
  doi: 10.1038/nnano.2010.26
– ident: e_1_2_5_11_1
  doi: 10.1002/ijch.201100113
– ident: e_1_2_5_12_1
  doi: 10.1021/ja01206a030
– ident: e_1_2_5_50_1
  doi: 10.1063/1.4905782
– ident: e_1_2_5_31_1
  doi: 10.1002/bit.260400805
– ident: e_1_2_5_23_1
  doi: 10.1039/c0cs00032a
– ident: e_1_2_5_6_1
  doi: 10.1038/nnano.2011.102
– ident: e_1_2_5_42_1
  doi: 10.1080/15421400701683956
– ident: e_1_2_5_49_1
  doi: 10.1039/C3NR05752F
– ident: e_1_2_5_21_1
  doi: 10.1002/adfm.201103054
– ident: e_1_2_5_20_1
  doi: 10.1016/j.chemphys.2014.10.015
– ident: e_1_2_5_22_1
  doi: 10.1002/pi.4395
– ident: e_1_2_5_24_1
  doi: 10.1002/chem.201000146
– ident: e_1_2_5_30_1
  doi: 10.1074/jbc.M504298200
– ident: e_1_2_5_9_1
  doi: 10.1002/chir.22335
– ident: e_1_2_5_15_1
  doi: 10.1042/BST0370682
– ident: e_1_2_5_44_1
  doi: 10.1039/C4CP05563B
– ident: e_1_2_5_3_1
  doi: 10.1002/9783527654185
– ident: e_1_2_5_5_1
  doi: 10.1016/j.tifs.2014.02.003
– ident: e_1_2_5_45_1
  doi: 10.1021/jp805257n
– ident: e_1_2_5_46_1
  doi: 10.1063/1.4748120
– ident: e_1_2_5_27_1
  doi: 10.1039/C4TC00692E
– ident: e_1_2_5_36_1
  doi: 10.1002/(SICI)1521-4095(200001)12:1<9::AID-ADMA9>3.0.CO;2-6
– ident: e_1_2_5_29_1
  doi: 10.1021/bi002555c
SSID ssj0044310
ssj0011473
Score 2.2880106
Snippet ABSTRACT Many proteins undergoe self‐assembly into fibrillar structures known as amyloid fibrils. During the self‐assembly process, related structures known as...
Many proteins undergoe self-assembly into fibrillar structures known as amyloid fibrils. During the self-assembly process, related structures known as...
Many proteins undergoes self-assembly into fibrillar structures known as amyloid fibrils. During the self-assembly process related structures, known as...
SourceID swepub
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 249
SubjectTerms Amyloid - chemistry
Amyloid - metabolism
amyloid fibrils
Balancing
Biopolymers
Crystallization
fluorescence
insulin
Kinetics
Lasers
Liquid crystals
mechanochemistry
Proteins
Proteins - chemistry
Self assembly
Spherulites
Stirring
Title Controlling amyloid fibril formation by partial stirring
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbip.22803
https://www.ncbi.nlm.nih.gov/pubmed/26756611
https://search.proquest.com/docview/1767069050
https://search.proquest.com/docview/1776645631
https://search.proquest.com/docview/1800496749
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-121017
Volume 105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED5NexkvjAFjZYACmtBe0iW2Yyfa0-ioBg8TQivqA5Jlx_ZUMdqqax_Gr99dvAQNtArxFilnK2ef7z47d58BDqQPzDLnU1lXKhW8dmlVeJE6WTOXszorfZPley7PRuLzuBhvwHFbCxP5IboDN1oZjb-mBW7s9dFv0lA7mfeJy4WYPnOuKJ3r9GtHHYUwX3UuWWCUjLUolOhVsKKlGMrYUdfN_cD0F9rsqETvo9gmDA234XurQMw--dFfLW2__vUHt-N_avgEHt_B0-Qk2tMObPjpU9gatLfCPYNyEHPbqYo9MT9xuz9xSaC6gaukK4RM7E0yJ5vErtCFLOjs8DmMhh8vBmfp3e0LaY0xiqeu9IHnNhehdE4UIvi84Zuy1jDpbIVbIWsMDy5zmbAyGKZCUBkLynODmJ3vwuZ0NvV7kJQVSjFvMm6dYLagVrn1FUI7n9WF7MG7duj1PJJs6EinzDQOgm4GoQdv20nRqDP91zBTP1td61xJRYTLRbZORkmJYJHna2RK2i9JJaoevIiz3n0Ow40VQhls_T6aQfeG-LlPJ99O9Gxxqa8mxM1Nbq4Hh83cPqyQ_vDpS_Pw8t9F9-ERIjYZMy5fweZysfKvERUt7ZvG_G8BOjsG0A
link.rule.ids 230,315,783,787,888,1378,27938,27939,46308,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5ReqAXoC9YHm2oqqqXLInt2InEBZaihVJUVVBxQVYc22gF7K6W3UP765mJSSpaFVW9RcrYih8z840z8xngvXSeGWZdLKtCxYJXNi4yJ2IrK2ZTViW5q7N8T2T_TBydZ-dzsNPUwgR-iPbAjTSjttek4HQgvf2LNdQMxl0ic-FP4CmqO6f7C_a_teRRCPRVa5QF-slQjUKpXhnLGpKhhG23_Tx0TX_gzZZM9CGOrR3RwRJcNEMI-SdX3dnUdKufv7E7_u8Yl2HxHqFGu2FLPYc5N3wBC73mYriXkPdCejsVskflDUb8Axt5Kh24jtpayMj8iMa0LbErtCITOj58BWcHn057_fj-Aoa4QjfFY5s7z1OTCp9bKzLhXVpTThlTMmlNgdGQKUvubWITYaQvmfJeJcwrx0uE7fw1zA9HQ7cKUV6gFHNlwo0VzGTUKjWuQHTnkiqTHXjXzL0eB54NHRiVmcZJ0PUkdGCrWRWNY6ZfG-XQjWa3OlVSEedyljwmo6REvMjTR2RyCpmkEkUHVsKyt5_DMLZCNIOtP4R90L4hiu79wfddPZpc6usB0XOTpevAx3px_z4gvXf4tX5Y-3fRt7DQP_1yrI8PTz6vwzMEcDIkYG7A_HQyc5sIkqbmTa0Ld5ZjCuo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED_xIY29AGNsdLAtTNPES1rHduxEPLF2FR8TQtOYeECy4tieKqCtuvZh--s5xySIIRDiLVLOVs4fd79z7n4G-Cyso5oaG4sylzFnpYnz1PLYiJKahJYks1WW77HYP-WHZ-nZHOzWtTCBH6I5cPM7o7LXfoOPjevckobqwbjtuVzYPCxywYjP5-r9aLijEOfLxiZzdJOhGMVneqU0rTmGCO00_dz1TPfgZsMlehfGVn6ovwLntQYh_eSiPZvqdvnvP3LHZ6q4Css3-DTaCwvqFczZ4Rosdetr4V5D1g3J7b6MPSquMN4fmMj5woHLqKmEjPTfaOwXJXaFNmTiDw_X4bT_7Wd3P765fiEu0Umx2GTWsUQn3GXG8JQ7m1SEU1oXVBidYyyki4I5QwzhWriCSuckoU5aViBoZ29gYTga2g2IshylqC0I04ZTnfpWibY5YjtLylS04FM99GocWDZU4FOmCgdBVYPQgu16UhTq7H9sFEM7mv1RiRTSMy6n5DEZKQSiRZY8IpP5gElInrfgbZj15nMoRlaIZbD1l7AMmjeeoLs3-LWnRpPf6nLgybm9nWvBTjW3Dyukvh6cVA_vni76EV6c9Prq-8Hx0Sa8RPQmQvblFixMJzP7HhHSVH-odsI1cmwJmQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controlling+amyloid+fibril+formation+by+partial+stirring&rft.jtitle=Biopolymers&rft.au=B%C3%A4cklund%2C+Fredrik+G&rft.au=Pallbo%2C+Jon&rft.au=Solin%2C+Niclas&rft.date=2016-05-01&rft.eissn=1097-0282&rft.volume=105&rft.issue=5&rft.spage=249&rft.epage=259&rft_id=info:doi/10.1002%2Fbip.22803&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3525&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3525&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3525&client=summon