Controlling amyloid fibril formation by partial stirring
ABSTRACT Many proteins undergoe self‐assembly into fibrillar structures known as amyloid fibrils. During the self‐assembly process, related structures known as spherulites can be formed. Herein we report a facile method where the balance between amyloid fibrils and spherulites can be controlled by s...
Saved in:
Published in | Biopolymers Vol. 105; no. 5; pp. 249 - 259 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.05.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
Many proteins undergoe self‐assembly into fibrillar structures known as amyloid fibrils. During the self‐assembly process, related structures known as spherulites can be formed. Herein we report a facile method where the balance between amyloid fibrils and spherulites can be controlled by stirring of the reaction mixture during the initial stages of the self‐assembly process. Moreover, we report how this methodology can be used to prepare non‐covalently functionalized amyloid fibrils. By stirring the reaction mixture continuously or for a limited time during the lag phase, the fibril length, and hence the propensity to form liquid crystalline phases, can be influenced. This phenomena is utilized in order to prepare films consisting of aligned protein fibrils incorporating the laser dye Nile red. The resulting films display polarized Nile red fluorescence. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 249–259, 2016. |
---|---|
AbstractList | Many proteins undergoe self-assembly into fibrillar structures known as amyloid fibrils. During the self-assembly process, related structures known as spherulites can be formed. Herein we report a facile method where the balance between amyloid fibrils and spherulites can be controlled by stirring of the reaction mixture during the initial stages of the self-assembly process. Moreover, we report how this methodology can be used to prepare non-covalently functionalized amyloid fibrils. By stirring the reaction mixture continuously or for a limited time during the lag phase, the fibril length, and hence the propensity to form liquid crystalline phases, can be influenced. This phenomena is utilized in order to prepare films consisting of aligned protein fibrils incorporating the laser dye Nile red. The resulting films display polarized Nile red fluorescence. Biopolymers 105: 249-259, 2016. Many proteins undergoe self-assembly into fibrillar structures known as amyloid fibrils. During the self-assembly process, related structures known as spherulites can be formed. Herein we report a facile method where the balance between amyloid fibrils and spherulites can be controlled by stirring of the reaction mixture during the initial stages of the self-assembly process. Moreover, we report how this methodology can be used to prepare non-covalently functionalized amyloid fibrils. By stirring the reaction mixture continuously or for a limited time during the lag phase, the fibril length, and hence the propensity to form liquid crystalline phases, can be influenced. This phenomena is utilized in order to prepare films consisting of aligned protein fibrils incorporating the laser dye Nile red. The resulting films display polarized Nile red fluorescence. Many proteins undergoes self-assembly into fibrillar structures known as amyloid fibrils. During the self-assembly process related structures, known as spherulites, can be formed. Herein we report a facile method where the balance between amyloid fibrils and spherulites can be controlled by stirring of the reaction mixture during the initial stages of the self-assembly process. Moreover, we report how this methodology can be used to prepare non-covalently functionalized amyloid fibrils. By stirring the reaction mixture continuously or for a limited time during the lag phase the fibril length, and hence the propensity to form liquid crystalline phases, can be influenced. This phenomena is utilized by preparing films consisting of aligned protein fibrils incorporating the laser dye Nile red. The resulting films display polarized Nile red fluorescence. ABSTRACT Many proteins undergoe self‐assembly into fibrillar structures known as amyloid fibrils. During the self‐assembly process, related structures known as spherulites can be formed. Herein we report a facile method where the balance between amyloid fibrils and spherulites can be controlled by stirring of the reaction mixture during the initial stages of the self‐assembly process. Moreover, we report how this methodology can be used to prepare non‐covalently functionalized amyloid fibrils. By stirring the reaction mixture continuously or for a limited time during the lag phase, the fibril length, and hence the propensity to form liquid crystalline phases, can be influenced. This phenomena is utilized in order to prepare films consisting of aligned protein fibrils incorporating the laser dye Nile red. The resulting films display polarized Nile red fluorescence. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 249–259, 2016. |
Author | Solin, Niclas Bäcklund, Fredrik G. Pallbo, Jon Blacklow, Stephen |
Author_xml | – sequence: 1 givenname: Fredrik G. surname: Bäcklund fullname: Bäcklund, Fredrik G. organization: Linköping University – sequence: 2 givenname: Jon surname: Pallbo fullname: Pallbo, Jon organization: Linköping University – sequence: 3 givenname: Niclas surname: Solin fullname: Solin, Niclas organization: Linköping University – sequence: 4 givenname: Stephen surname: Blacklow fullname: Blacklow, Stephen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26756611$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-121017$$DView record from Swedish Publication Index |
BookMark | eNqN0UtLxDAUBeAgio6PhX9AutRF9ebRpF3q-IQBXajbkEwTiaRNTVpk_r3Vju5EV3fzcTjcs4s229AahA4xnGIAcqZdd0pICXQDzTBUIgdSkk00AwCe04IUO2g3pVcAxiiGbbRDuCg4x3iGynlo-xi8d-1LppqVD67OrNPR-cyG2KjehTbTq6xTsXfKZ6l3MY54H21Z5ZM5WN899HR99Ti_zRf3N3fz80W-ZKSieV0aS7HGzJZ1zQpmzWdBzLVWhNe6KjnRSlFbQw1Mc6uIsFYAscJQJQSheyifctO76QYtu-gaFVcyKCcv3fO5DPFFejdITDBgMfrjyXcxvA0m9bJxaWm8V60JQ5K4HN9QccGqv6kQnLOCU_wPygXwCgoY6clElzGkFI39qYxBfs4lx7nk11yjPVrHDrox9Y_83mcEZxN4d96sfk-SF3cPU-QHJoafXQ |
CitedBy_id | crossref_primary_10_1039_D1RA06878D crossref_primary_10_1002_admi_202200926 crossref_primary_10_1021_acs_biochem_7b00243 crossref_primary_10_1021_acsapm_1c00382 crossref_primary_10_1002_bip_23342 crossref_primary_10_1039_D1NR05571B crossref_primary_10_1021_acs_jpclett_8b03143 crossref_primary_10_1016_j_bbrc_2020_08_088 crossref_primary_10_1002_cssc_202102097 crossref_primary_10_1080_17518253_2022_2102941 crossref_primary_10_3390_ma15030708 crossref_primary_10_1007_s10853_018_2461_7 crossref_primary_10_1128_AEM_01149_21 crossref_primary_10_1364_BOE_8_000743 |
Cites_doi | 10.1038/nphoton.2012.264 10.1002/bip.21709 10.1021/ma202157h 10.1039/b927489h 10.1529/biophysj.104.051896 10.1039/c0mb00236d 10.1146/annurev.biochem.75.101304.123901 10.1073/pnas.1208228109 10.1016/j.cep.2012.03.004 10.1002/bip.21646 10.1016/j.bbrc.2012.02.077 10.1039/c2sm26946e 10.1021/co5001212 10.1134/S0006297912110028 10.1073/pnas.0405933101 10.1016/j.colsurfb.2011.09.018 10.1385/ABAB:84-86:1-9:761 10.1021/la9021432 10.1002/adma.201100529 10.1007/s10853-011-5363-5 10.1073/pnas.88.21.9377 10.1038/318162a0 10.1016/j.tibs.2007.03.003 10.1039/C1FO10163C 10.1021/nl1012008 10.1038/nnano.2010.26 10.1002/ijch.201100113 10.1021/ja01206a030 10.1063/1.4905782 10.1002/bit.260400805 10.1039/c0cs00032a 10.1038/nnano.2011.102 10.1080/15421400701683956 10.1039/C3NR05752F 10.1002/adfm.201103054 10.1016/j.chemphys.2014.10.015 10.1002/pi.4395 10.1002/chem.201000146 10.1074/jbc.M504298200 10.1002/chir.22335 10.1042/BST0370682 10.1039/C4CP05563B 10.1002/9783527654185 10.1016/j.tifs.2014.02.003 10.1021/jp805257n 10.1063/1.4748120 10.1039/C4TC00692E 10.1002/(SICI)1521-4095(200001)12:1<9::AID-ADMA9>3.0.CO;2-6 10.1021/bi002555c |
ContentType | Journal Article |
Copyright | 2016 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2016 Wiley Periodicals, Inc. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 7QO 8FD FR3 P64 7U5 L7M ADTPV AOWAS DG8 |
DOI | 10.1002/bip.22803 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace SwePub SwePub Articles SWEPUB Linköpings universitet |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | Technology Research Database MEDLINE CrossRef MEDLINE - Academic Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1097-0282 |
EndPage | 259 |
ExternalDocumentID | oai_DiVA_org_liu_121017 10_1002_bip_22803 26756611 BIP22803 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University (Faculty Grant SFO‐Mat‐Liu) (to N.S.) funderid: 2009‐00971 – fundername: Knut and Alice Wallenberg foundation |
GroupedDBID | .GA .Y3 05W 10A 1OB 1OC 31~ 4.4 4ZD 51W 51X 52N 52O 52P 52T 52W 52X 7PT 930 A03 AANLZ AASGY AAXRX ABJNI ACAHQ ACCZN ACXBN ADOZA AEUYR AFBPY AFZJQ ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ATUGU BRXPI BY8 DCZOG DRFUL DRSTM G-S GNP GODZA HF~ HHZ LATKE LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM P2W P4D QB0 RWI SUPJJ UB1 WIH WIK WJL WQJ WRC XG1 XV2 ZZTAW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 7QO 8FD FR3 P64 7U5 L7M ADTPV AOWAS DG8 |
ID | FETCH-LOGICAL-c4293-d8ef31b14f8dd454fe109716bba26db9862baa3fd0d04b6fa27ff702f7e3a7723 |
IEDL.DBID | DR2 |
ISSN | 0006-3525 1097-0282 |
IngestDate | Sat Aug 24 00:18:48 EDT 2024 Thu Apr 11 21:34:08 EDT 2024 Fri Apr 12 02:21:13 EDT 2024 Thu Apr 11 19:38:05 EDT 2024 Fri Aug 23 02:38:21 EDT 2024 Thu May 23 23:22:50 EDT 2024 Sat Aug 24 01:08:55 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | self-assembly mechanochemistry insulin fluorescence amyloid fibrils |
Language | English |
License | 2016 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4293-d8ef31b14f8dd454fe109716bba26db9862baa3fd0d04b6fa27ff702f7e3a7723 |
Notes | This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of any preprints from the past two calendar years by emailing the Biopolymers editorial office at . biopolymers@wiley.com ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26756611 |
PQID | 1767069050 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | swepub_primary_oai_DiVA_org_liu_121017 proquest_miscellaneous_1800496749 proquest_miscellaneous_1776645631 proquest_miscellaneous_1767069050 crossref_primary_10_1002_bip_22803 pubmed_primary_26756611 wiley_primary_10_1002_bip_22803_BIP22803 |
PublicationCentury | 2000 |
PublicationDate | May 2016 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: May 2016 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biopolymers |
PublicationTitleAlternate | Biopolymers |
PublicationYear | 2016 |
References | 2010; 12 2010; 10 2010; 16 2006; 75 2013; 68 2013; 62 2011; 97 2014; 26 2015; 106 2007; 32 2001; 40 2012; 52 2013; 9 2010; 26 2014; 2 2000; 12 1991; 88 2012; 419 2014; 16 2011; 23 2008; 112 2010; 5 2012; 22 2014; 6 2014; 445 1992; 40 2004; 101 2015; 17 2012; 101 2010; 39 2011; 6 2012; 77 1946; 68 2005; 88 2011; 7 2012; 109 2007; 477 2005; 280 2012; 3 2000; 8486 1985; 318 2011; 95 2014; 37 2011; 46 2013 2012; 6 2012; 89 2012; 45 2009; 37 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_29_1 e_1_2_5_42_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_3_1 e_1_2_5_19_1 e_1_2_5_30_1 e_1_2_5_28_1 e_1_2_5_49_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_18_1 e_1_2_5_31_1 e_1_2_5_50_1 |
References_xml | – volume: 75 start-page: 333 year: 2006 end-page: 366 publication-title: Annu Rev Biochem – volume: 37 start-page: 42 year: 2014 end-page: 50 publication-title: Trends Food Sci Technol – volume: 89 start-page: 216 year: 2012 end-page: 222 publication-title: Colloids Surf B – volume: 9 start-page: 2852 year: 2013 end-page: 2857 publication-title: Soft Matter – volume: 101 start-page: 091110 year: 2012 publication-title: Appl Phys Lett – volume: 16 start-page: 721 year: 2014 end-page: 729 publication-title: ACS Comb Sci – volume: 419 start-page: 682 year: 2012 end-page: 686 publication-title: Biochem Biophys Res Commun – volume: 10 start-page: 2225 year: 2010 end-page: 2230 publication-title: Nano Lett – volume: 477 start-page: 517 year: 2007 end-page: 535 publication-title: Mol Cryst Liq Cryst – volume: 445 start-page: 1 year: 2014 end-page: 4 publication-title: Chem Phys – volume: 26 start-page: 504 year: 2010 end-page: 514 publication-title: Langmuir – volume: 7 start-page: 1232 year: 2011 end-page: 1240 publication-title: Mol BioSyst – volume: 68 start-page: 247 year: 1946 end-page: 250 publication-title: J Am Chem Soc – volume: 77 start-page: 1237 year: 2012 end-page: 1247 publication-title: Biochemistry (Moscow) – volume: 68 start-page: 38 year: 2013 end-page: 44 publication-title: Chem Eng Process – volume: 40 start-page: 895 year: 1992 end-page: 903 publication-title: Biotechnol Bioeng – volume: 106 start-page: 123702 year: 2015 publication-title: Appl Phys Lett – volume: 280 start-page: 42669 year: 2005 end-page: 42675 publication-title: J Biol Chem – volume: 95 start-page: 733 year: 2011 end-page: 745 publication-title: Biopolymers – volume: 37 start-page: 682 year: 2009 end-page: 686 publication-title: Biochem Soc Trans – volume: 12 start-page: 8016 year: 2010 end-page: 8023 publication-title: Phys Chem Chem Phys – volume: 12 start-page: 9 year: 2000 end-page: 20 publication-title: Adv Mater – volume: 32 start-page: 217 year: 2007 end-page: 224 publication-title: Trends Biochem Sci – volume: 26 start-page: 580 year: 2014 end-page: 587 publication-title: Chirality – volume: 6 start-page: 1629 year: 2014 end-page: 1634 publication-title: Nanoscale – volume: 22 start-page: 3424 year: 2012 end-page: 3428 publication-title: Adv Funct Mater – volume: 88 start-page: 9377 year: 1991 end-page: 9381 publication-title: Proc Natl Acad Sci USA – volume: 23 start-page: 4261 year: 2011 end-page: 4264 publication-title: Adv Mater – volume: 2 start-page: 7811 year: 2014 end-page: 7822 publication-title: N. J Mater Chem C – volume: 17 start-page: 7606 year: 2015 end-page: 7618 publication-title: Phys Chem Chem Phys – volume: 52 start-page: 529 year: 2012 end-page: 539 publication-title: Isr J Chem – volume: 3 start-page: 221 year: 2012 end-page: 227 publication-title: Food Funct – volume: 6 start-page: 469 year: 2011 end-page: 479 publication-title: J Nat Nanotechnol – volume: 39 start-page: 3464 year: 2010 end-page: 3479 publication-title: Chem Soc Rev – volume: 16 start-page: 4190 year: 2010 end-page: 4195 publication-title: Chem Eur J – volume: 101 start-page: 14420 year: 2004 end-page: 14424 publication-title: Proc Nat Acad Sci USA – volume: 8486 start-page: 761 year: 2000 end-page: 768 publication-title: Appl Biochem Biotechnol – volume: 112 start-page: 16249 year: 2008 end-page: 16252 publication-title: J Phys Chem Lett B – volume: 40 start-page: 6036 year: 2001 end-page: 6046 publication-title: Biochemistry – volume: 88 start-page: 2013 year: 2005 end-page: 2021 publication-title: Biophys J – volume: 45 start-page: 1137 year: 2012 end-page: 1150 publication-title: Macromolecules – volume: 46 start-page: 3687 year: 2011 end-page: 3692 publication-title: O. J Mater Sci – volume: 318 start-page: 162 year: 1985 end-page: 163 publication-title: Nature – volume: 97 start-page: 123 year: 2011 end-page: 133 publication-title: Biopolymers – volume: 62 start-page: 22 year: 2013 end-page: 32 publication-title: Polym Int – volume: 109 start-page: 14446 year: 2012 publication-title: Proc Natl Acad Sci USA – volume: 6 start-page: 818 year: 2012 end-page: 823 publication-title: Nat Photon – year: 2013 – volume: 5 start-page: 204 year: 2010 end-page: 207 publication-title: Nat Nanotechnol – ident: e_1_2_5_47_1 doi: 10.1038/nphoton.2012.264 – ident: e_1_2_5_14_1 doi: 10.1002/bip.21709 – ident: e_1_2_5_38_1 doi: 10.1021/ma202157h – ident: e_1_2_5_40_1 doi: 10.1039/b927489h – ident: e_1_2_5_18_1 doi: 10.1529/biophysj.104.051896 – ident: e_1_2_5_41_1 doi: 10.1039/c0mb00236d – ident: e_1_2_5_2_1 doi: 10.1146/annurev.biochem.75.101304.123901 – ident: e_1_2_5_16_1 doi: 10.1073/pnas.1208228109 – ident: e_1_2_5_43_1 doi: 10.1016/j.cep.2012.03.004 – ident: e_1_2_5_34_1 doi: 10.1002/bip.21646 – ident: e_1_2_5_26_1 doi: 10.1016/j.bbrc.2012.02.077 – ident: e_1_2_5_35_1 doi: 10.1039/c2sm26946e – ident: e_1_2_5_28_1 doi: 10.1021/co5001212 – ident: e_1_2_5_13_1 doi: 10.1134/S0006297912110028 – ident: e_1_2_5_17_1 doi: 10.1073/pnas.0405933101 – ident: e_1_2_5_19_1 doi: 10.1016/j.colsurfb.2011.09.018 – ident: e_1_2_5_33_1 doi: 10.1385/ABAB:84-86:1-9:761 – ident: e_1_2_5_37_1 doi: 10.1021/la9021432 – ident: e_1_2_5_48_1 doi: 10.1002/adma.201100529 – ident: e_1_2_5_8_1 doi: 10.1007/s10853-011-5363-5 – ident: e_1_2_5_32_1 doi: 10.1073/pnas.88.21.9377 – ident: e_1_2_5_39_1 doi: 10.1038/318162a0 – ident: e_1_2_5_4_1 doi: 10.1016/j.tibs.2007.03.003 – ident: e_1_2_5_10_1 doi: 10.1039/C1FO10163C – ident: e_1_2_5_25_1 doi: 10.1021/nl1012008 – ident: e_1_2_5_7_1 doi: 10.1038/nnano.2010.26 – ident: e_1_2_5_11_1 doi: 10.1002/ijch.201100113 – ident: e_1_2_5_12_1 doi: 10.1021/ja01206a030 – ident: e_1_2_5_50_1 doi: 10.1063/1.4905782 – ident: e_1_2_5_31_1 doi: 10.1002/bit.260400805 – ident: e_1_2_5_23_1 doi: 10.1039/c0cs00032a – ident: e_1_2_5_6_1 doi: 10.1038/nnano.2011.102 – ident: e_1_2_5_42_1 doi: 10.1080/15421400701683956 – ident: e_1_2_5_49_1 doi: 10.1039/C3NR05752F – ident: e_1_2_5_21_1 doi: 10.1002/adfm.201103054 – ident: e_1_2_5_20_1 doi: 10.1016/j.chemphys.2014.10.015 – ident: e_1_2_5_22_1 doi: 10.1002/pi.4395 – ident: e_1_2_5_24_1 doi: 10.1002/chem.201000146 – ident: e_1_2_5_30_1 doi: 10.1074/jbc.M504298200 – ident: e_1_2_5_9_1 doi: 10.1002/chir.22335 – ident: e_1_2_5_15_1 doi: 10.1042/BST0370682 – ident: e_1_2_5_44_1 doi: 10.1039/C4CP05563B – ident: e_1_2_5_3_1 doi: 10.1002/9783527654185 – ident: e_1_2_5_5_1 doi: 10.1016/j.tifs.2014.02.003 – ident: e_1_2_5_45_1 doi: 10.1021/jp805257n – ident: e_1_2_5_46_1 doi: 10.1063/1.4748120 – ident: e_1_2_5_27_1 doi: 10.1039/C4TC00692E – ident: e_1_2_5_36_1 doi: 10.1002/(SICI)1521-4095(200001)12:1<9::AID-ADMA9>3.0.CO;2-6 – ident: e_1_2_5_29_1 doi: 10.1021/bi002555c |
SSID | ssj0044310 ssj0011473 |
Score | 2.2880106 |
Snippet | ABSTRACT
Many proteins undergoe self‐assembly into fibrillar structures known as amyloid fibrils. During the self‐assembly process, related structures known as... Many proteins undergoe self-assembly into fibrillar structures known as amyloid fibrils. During the self-assembly process, related structures known as... Many proteins undergoes self-assembly into fibrillar structures known as amyloid fibrils. During the self-assembly process related structures, known as... |
SourceID | swepub proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 249 |
SubjectTerms | Amyloid - chemistry Amyloid - metabolism amyloid fibrils Balancing Biopolymers Crystallization fluorescence insulin Kinetics Lasers Liquid crystals mechanochemistry Proteins Proteins - chemistry Self assembly Spherulites Stirring |
Title | Controlling amyloid fibril formation by partial stirring |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbip.22803 https://www.ncbi.nlm.nih.gov/pubmed/26756611 https://search.proquest.com/docview/1767069050 https://search.proquest.com/docview/1776645631 https://search.proquest.com/docview/1800496749 https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-121017 |
Volume | 105 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED5NexkvjAFjZYACmtBe0iW2Yyfa0-ioBg8TQivqA5Jlx_ZUMdqqax_Gr99dvAQNtArxFilnK2ef7z47d58BDqQPzDLnU1lXKhW8dmlVeJE6WTOXszorfZPley7PRuLzuBhvwHFbCxP5IboDN1oZjb-mBW7s9dFv0lA7mfeJy4WYPnOuKJ3r9GtHHYUwX3UuWWCUjLUolOhVsKKlGMrYUdfN_cD0F9rsqETvo9gmDA234XurQMw--dFfLW2__vUHt-N_avgEHt_B0-Qk2tMObPjpU9gatLfCPYNyEHPbqYo9MT9xuz9xSaC6gaukK4RM7E0yJ5vErtCFLOjs8DmMhh8vBmfp3e0LaY0xiqeu9IHnNhehdE4UIvi84Zuy1jDpbIVbIWsMDy5zmbAyGKZCUBkLynODmJ3vwuZ0NvV7kJQVSjFvMm6dYLagVrn1FUI7n9WF7MG7duj1PJJs6EinzDQOgm4GoQdv20nRqDP91zBTP1td61xJRYTLRbZORkmJYJHna2RK2i9JJaoevIiz3n0Ow40VQhls_T6aQfeG-LlPJ99O9Gxxqa8mxM1Nbq4Hh83cPqyQ_vDpS_Pw8t9F9-ERIjYZMy5fweZysfKvERUt7ZvG_G8BOjsG0A |
link.rule.ids | 230,315,783,787,888,1378,27938,27939,46308,46732 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5ReqAXoC9YHm2oqqqXLInt2InEBZaihVJUVVBxQVYc22gF7K6W3UP765mJSSpaFVW9RcrYih8z840z8xngvXSeGWZdLKtCxYJXNi4yJ2IrK2ZTViW5q7N8T2T_TBydZ-dzsNPUwgR-iPbAjTSjttek4HQgvf2LNdQMxl0ic-FP4CmqO6f7C_a_teRRCPRVa5QF-slQjUKpXhnLGpKhhG23_Tx0TX_gzZZM9CGOrR3RwRJcNEMI-SdX3dnUdKufv7E7_u8Yl2HxHqFGu2FLPYc5N3wBC73mYriXkPdCejsVskflDUb8Axt5Kh24jtpayMj8iMa0LbErtCITOj58BWcHn057_fj-Aoa4QjfFY5s7z1OTCp9bKzLhXVpTThlTMmlNgdGQKUvubWITYaQvmfJeJcwrx0uE7fw1zA9HQ7cKUV6gFHNlwo0VzGTUKjWuQHTnkiqTHXjXzL0eB54NHRiVmcZJ0PUkdGCrWRWNY6ZfG-XQjWa3OlVSEedyljwmo6REvMjTR2RyCpmkEkUHVsKyt5_DMLZCNIOtP4R90L4hiu79wfddPZpc6usB0XOTpevAx3px_z4gvXf4tX5Y-3fRt7DQP_1yrI8PTz6vwzMEcDIkYG7A_HQyc5sIkqbmTa0Ld5ZjCuo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED_xIY29AGNsdLAtTNPES1rHduxEPLF2FR8TQtOYeECy4tieKqCtuvZh--s5xySIIRDiLVLOVs4fd79z7n4G-Cyso5oaG4sylzFnpYnz1PLYiJKahJYks1WW77HYP-WHZ-nZHOzWtTCBH6I5cPM7o7LXfoOPjevckobqwbjtuVzYPCxywYjP5-r9aLijEOfLxiZzdJOhGMVneqU0rTmGCO00_dz1TPfgZsMlehfGVn6ovwLntQYh_eSiPZvqdvnvP3LHZ6q4Css3-DTaCwvqFczZ4Rosdetr4V5D1g3J7b6MPSquMN4fmMj5woHLqKmEjPTfaOwXJXaFNmTiDw_X4bT_7Wd3P765fiEu0Umx2GTWsUQn3GXG8JQ7m1SEU1oXVBidYyyki4I5QwzhWriCSuckoU5aViBoZ29gYTga2g2IshylqC0I04ZTnfpWibY5YjtLylS04FM99GocWDZU4FOmCgdBVYPQgu16UhTq7H9sFEM7mv1RiRTSMy6n5DEZKQSiRZY8IpP5gElInrfgbZj15nMoRlaIZbD1l7AMmjeeoLs3-LWnRpPf6nLgybm9nWvBTjW3Dyukvh6cVA_vni76EV6c9Prq-8Hx0Sa8RPQmQvblFixMJzP7HhHSVH-odsI1cmwJmQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controlling+amyloid+fibril+formation+by+partial+stirring&rft.jtitle=Biopolymers&rft.au=B%C3%A4cklund%2C+Fredrik+G&rft.au=Pallbo%2C+Jon&rft.au=Solin%2C+Niclas&rft.date=2016-05-01&rft.eissn=1097-0282&rft.volume=105&rft.issue=5&rft.spage=249&rft.epage=259&rft_id=info:doi/10.1002%2Fbip.22803&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3525&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3525&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3525&client=summon |