Controlling amyloid fibril formation by partial stirring

ABSTRACT Many proteins undergoe self‐assembly into fibrillar structures known as amyloid fibrils. During the self‐assembly process, related structures known as spherulites can be formed. Herein we report a facile method where the balance between amyloid fibrils and spherulites can be controlled by s...

Full description

Saved in:
Bibliographic Details
Published inBiopolymers Vol. 105; no. 5; pp. 249 - 259
Main Authors Bäcklund, Fredrik G., Pallbo, Jon, Solin, Niclas, Blacklow, Stephen
Format Journal Article
LanguageEnglish
Published United States 01.05.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:ABSTRACT Many proteins undergoe self‐assembly into fibrillar structures known as amyloid fibrils. During the self‐assembly process, related structures known as spherulites can be formed. Herein we report a facile method where the balance between amyloid fibrils and spherulites can be controlled by stirring of the reaction mixture during the initial stages of the self‐assembly process. Moreover, we report how this methodology can be used to prepare non‐covalently functionalized amyloid fibrils. By stirring the reaction mixture continuously or for a limited time during the lag phase, the fibril length, and hence the propensity to form liquid crystalline phases, can be influenced. This phenomena is utilized in order to prepare films consisting of aligned protein fibrils incorporating the laser dye Nile red. The resulting films display polarized Nile red fluorescence. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 249–259, 2016.
Bibliography:This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of any preprints from the past two calendar years by emailing the Biopolymers editorial office at
.
biopolymers@wiley.com
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0006-3525
1097-0282
1097-0282
DOI:10.1002/bip.22803