A targeted genetic screen identifies crucial players in the specification of the Drosophila abdominal Capaergic neurons

The central nervous system contains a wide variety of neuronal subclasses generated by neural progenitors. The achievement of a unique neural fate is the consequence of a sequence of early and increasingly restricted regulatory events, which culminates in the expression of a specific genetic combina...

Full description

Saved in:
Bibliographic Details
Published inMechanisms of development Vol. 128; no. 3; pp. 208 - 221
Main Authors Gabilondo, Hugo, Losada-Pérez, María, del Saz, Delia, Molina, Isabel, León, Yolanda, Canal, Inmaculada, Torroja, Laura, Benito-Sipos, Jonathan
Format Journal Article
LanguageEnglish
Published Ireland Elsevier Ireland Ltd 01.03.2011
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The central nervous system contains a wide variety of neuronal subclasses generated by neural progenitors. The achievement of a unique neural fate is the consequence of a sequence of early and increasingly restricted regulatory events, which culminates in the expression of a specific genetic combinatorial code that confers individual characteristics to the differentiated cell. How the earlier regulatory events influence post-mitotic cell fate decisions is beginning to be understood in the Drosophila NB 5-6 lineage. However, it remains unknown to what extent these events operate in other lineages. To better understand this issue, we have used a very highly specific marker that identifies a small subset of abdominal cells expressing the Drosophila neuropeptide Capa: the ABCA neurons. Our data support the birth of the ABCA neurons from NB 5-3 in a cas temporal window in the abdominal segments A2–A4. Moreover, we show that the ABCA neuron has an ABCA-sibling cell which dies by apoptosis. Surprisingly, both cells are also generated in the abdominal segments A5–A7, although they undergo apoptosis before expressing Capa. In addition, we have performed a targeted genetic screen to identify players involved in ABCA specification. We have found that the ABCA fate requires zfh2, grain, Grunge and hedgehog genes. Finally, we show that the NB 5-3 generates other subtype of Capa-expressing cells (SECAs) in the third suboesophageal segment, which are born during a pdm/ cas temporal window, and have different genetic requirements for their specification.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0925-4773
1872-6356
DOI:10.1016/j.mod.2011.01.002