Keratinolytic enzyme-mediated biodegradation of recalcitrant feather by a newly isolated Xanthomonas sp. P5

We isolated and characterized a novel feather-degrading Xanthomonas sp. P5 with keratinolytic activity. In improved medium containing 0.1% (w/v) feather, maximal keratinolytic activity was observed at 5 days (69.0 ± 0.6 U/mL). This value was 7.1-fold higher than the yield in basal feather medium. Th...

Full description

Saved in:
Bibliographic Details
Published inPolymer degradation and stability Vol. 95; no. 10; pp. 1969 - 1977
Main Authors Jeong, Jin-Ha, Park, Ki-Hyun, Oh, Dong-Joo, Hwang, Dae-Youn, Kim, Hong-Sung, Lee, Chung-Yeol, Son, Hong-Joo
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.10.2010
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We isolated and characterized a novel feather-degrading Xanthomonas sp. P5 with keratinolytic activity. In improved medium containing 0.1% (w/v) feather, maximal keratinolytic activity was observed at 5 days (69.0 ± 0.6 U/mL). This value was 7.1-fold higher than the yield in basal feather medium. The strain P5 degraded feather completely after 7 days. Feather degradation resulted in free thiol group, soluble protein and amino acids formation, indicating that sulfitolysis and proteolysis may be responsible for feather degradation by the strain P5. Total free amino acid concentration in the cell-free supernatant was around 188.6 μM. Asparagine, methionine, histidine and threonine were the major amino acids released in the culture. Xanthomonas sp. P5 exhibited multiple plant growth-promoting attributes such as siderophore, indoleacetic acid, ammonia, hydrolytic enzyme and antifungal activity. Our results indicate that Xanthomonas sp. P5 could be not only used to upgrade the nutritional value of recalcitrant feather waste but is also a potential candidate for the development of biofertilizer or biocontrol agent applicable to crop plant soil.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0141-3910
1873-2321
DOI:10.1016/j.polymdegradstab.2010.07.020