Ni() immobilized on poly(guanidine-triazine-sulfonamide) (PGTSA/Ni): a mesoporous nanocatalyst for synthesis of imines

Mesoporous materials have been the subject of intense research regarding their unique structural and textural properties and successful applications in various fields. This study reports a novel approach for synthesizing a novel porous polymer stabilizer through condensation polymerization in which...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 12; no. 53; pp. 34425 - 34437
Main Authors Ghiai, Ramin, Alavinia, Sedigheh, Ghorbani-Vaghei, Ramin, Gharakhani, Alireza
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 29.11.2022
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Mesoporous materials have been the subject of intense research regarding their unique structural and textural properties and successful applications in various fields. This study reports a novel approach for synthesizing a novel porous polymer stabilizer through condensation polymerization in which Fe 3 O 4 magnetic nanoparticles (Fe 3 O 4 MNPs) are used as hard templates. Using this method allowed the facile and fast removal of the template and mesopores formation following the Fe 3 O 4 MNPs. Different techniques were performed to characterize the structure of the polymer. Based on the obtained results, the obtained mesoporous polymeric network was multi-layered and consisted of repeating units of sulfonamide, triazine, and guanidine as a novel heterogeneous multifunctional support. Afterward, the new nickel organometallic complex was supported on its inner surface using the porous poly sulfonamide triazine guanidine (PGTSA/Ni). In this process, the obtained PGTSA/Ni nanocomposite was used as a heterogeneous catalyst in the synthesis of imines from amines. Since this reaction has an acceptorless dehydrogenation pathway, the hydrogen gas is released as its by-product. The synthesized nanocatalyst was structurally confirmed using different characterization modalities, including FT-IR, SEM, XRD, EDX, TEM, elemental mapping, ICP-AES, BET, and TGA. In addition, all products were obtained in high turnover frequency (TOF) and turnover number (TON). The corresponding results revealed the high selectivity and activity of the prepared catalyst through these coupling reactions. Overall, the synthesized nanocatalyst is useable for eight cycles with no considerable catalytic efficiency loss. Mesoporous materials have been the subject of intense research regarding their unique structural and textural properties and successful applications in various fields.
Bibliography:https://doi.org/10.1039/d2ra06196a
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2046-2069
2046-2069
DOI:10.1039/d2ra06196a