Synthetic chiral magnets promoted by the Dzyaloshinskii–Moriya interaction
The ability to engineer the interactions in assemblies of nanoscale magnets is central to the development of artificial spin systems and spintronic technologies. Following the emergence of the Dzyaloshinskii–Moriya interaction (DMI) in thin film magnetism, new routes have been opened to couple the n...
Saved in:
Published in | Applied physics letters Vol. 117; no. 13 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
28.09.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The ability to engineer the interactions in assemblies of nanoscale magnets is central to the development of artificial spin systems and spintronic technologies. Following the emergence of the Dzyaloshinskii–Moriya interaction (DMI) in thin film magnetism, new routes have been opened to couple the nanomagnets via strong chiral interactions, which is complementary to the established dipolar and exchange coupling mechanisms. In this Perspective, we review recent progress in the engineering of synthetic magnets coupled by the interlayer and intralayer DMI. We show how multilayer chiral magnetic structures and two-dimensional synthetic antiferromagnets, skyrmions, and artificial spin systems can be realized by simultaneous control of the DMI and magnetic anisotropy. In addition, we show that, with the combination of DMI and current-induced spin–orbit torques, field-free switching of synthetic magnetic elements is obtained as well as all-electric domain wall logic circuits. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0021184 |