Enhancing ultra-early strength of sulphoaluminate cement-based materials by incorporating graphene oxide

In order to meet the increasing engineering requirements, the ultra-early strength of sulphoaluminate cement (SAC)-based materials need to be improved to achieve road repair, engineering rescue and other objectives. Graphene oxide (GO) of 0.04 wt% was incorporated into SAC mortar to prepare GO enhan...

Full description

Saved in:
Bibliographic Details
Published inNanotechnology reviews (Berlin) Vol. 9; no. 1; pp. 17 - 27
Main Authors Liu, Yushi, Jia, Minjie, Song, Chengzhe, Lu, Shuang, Wang, Hui, Zhang, Guanhua, Yang, Yingzi
Format Journal Article
LanguageEnglish
Published Berlin De Gruyter 01.01.2020
Walter de Gruyter GmbH
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In order to meet the increasing engineering requirements, the ultra-early strength of sulphoaluminate cement (SAC)-based materials need to be improved to achieve road repair, engineering rescue and other objectives. Graphene oxide (GO) of 0.04 wt% was incorporated into SAC mortar to prepare GO enhanced SAC mortar (GO-SAC). It was found that the compressive strength of GO-SAC was increased by 46.9% at the age of 6 hours, and the flexural strength of GO-SAC was increased by 121.4% at the age of 100 minutes, compared with the control SAC mortar. The mechanism analysis based on the characterization results derived from XRD, BET, in situ ATR-FTIR, hydration heat measurement, TG–DSC and SEM showed that, the addition of minute quantities of GO led to the formation and growth of ribbon-like AFt,which further resulted in the improvement of the ultra-early strength of GO-SAC. This work indicates that GO has great potential for practical application in the preparation of high-performance SAC-based materials with ultra-early strength.
ISSN:2191-9097
2191-9089
2191-9097
DOI:10.1515/ntrev-2020-0002