Peroxisomes: The neuropathological consequences of peroxisomal dysfunction in the developing brain
Peroxisomes are intracellular organelles that perform vital metabolic functions. They have been extensively studied in the hepatic and renal systems, yet their pivotal roles in facilitating central nervous system patterning and in disease pathogenesis are only recently being firmly established by th...
Saved in:
Published in | The international journal of biochemistry & cell biology Vol. 45; no. 9; pp. 2012 - 2015 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.09.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Peroxisomes are intracellular organelles that perform vital metabolic functions. They have been extensively studied in the hepatic and renal systems, yet their pivotal roles in facilitating central nervous system patterning and in disease pathogenesis are only recently being firmly established by the neuroscience community. Peroxisomal functions including the break-down of long chain fatty acids, the removal of H2O2, and the biosynthesis of ether lipids. The build up of long chain fatty acids and H2O2 is detrimental to cellular function, and ether lipids play roles in maintaining cell membrane structure. These findings have major implications for treatments for the full spectrum of peroxisomal disorders. Here, we provide a timely review highlighting the most important data in recent times linking peroxisomal functions to brain formation, and we describe how peroxisomal deficiency and pathway dysfunction results in neurological deficits, the more severe of which result in life changing disabilities and death. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1357-2725 1878-5875 |
DOI: | 10.1016/j.biocel.2013.06.019 |