Two-Stage Ultraviolet Degradation of Perovskite Solar Cells Induced by the Oxygen Vacancy-Ti4+ States
The failure of perovskite solar cells (PSCs) under ultraviolet (UV) irradiation is a serious barrier of commercial utilization. Here, a two-stage degradation process of TiO2-based PSCs is discovered under continuous UV irradiation in an inert atmosphere. In the first decay stage, oxygen vacancy-Ti3+...
Saved in:
Published in | iScience Vol. 23; no. 4; p. 101013 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
24.04.2020
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2589-0042 2589-0042 |
DOI | 10.1016/j.isci.2020.101013 |
Cover
Loading…
Summary: | The failure of perovskite solar cells (PSCs) under ultraviolet (UV) irradiation is a serious barrier of commercial utilization. Here, a two-stage degradation process of TiO2-based PSCs is discovered under continuous UV irradiation in an inert atmosphere. In the first decay stage, oxygen vacancy-Ti3+ (Ti3+-VO) transform into active Ti4+-VO trap states under UV excitation and cause photocarrier loss. Furthermore, Ti4+-VO states can convert back into Ti3+-VO states through oxidizing I−, which result in the accumulation of I3−. Sequentially, the rapid decomposition of perovskite accelerated by increasing I3− replaces the photocarrier loss as the dominant mechanism leading to the second decay stage. Then, a universal method is proposed to improve the UV stability by blocking the transformation of Ti3+-VO states, which can be realized by polyethyleneimine ethoxylated (PEIE) modified layer. The optimized devices remain ∼75% of its initial efficiency (20.51%) under UV irradiation at 72 days, whereas the normal devices fail completely.
[Display omitted]
•A two-stage degradation process of TiO2-based PSCs under continuous UV irradiation•The transformation of Ti3+-VO to Ti4+-VO states is responsible for the UV degradation•A universal method to enhance the UV stability of PSCs was proposed
Inorganic Materials; Optical Materials; Materials Chemistry |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact These authors contributed equally |
ISSN: | 2589-0042 2589-0042 |
DOI: | 10.1016/j.isci.2020.101013 |