Layer-by-layer coated lipid–polymer hybrid nanoparticles designed for use in anticancer drug delivery

•Layer-by-layer technique was successfully implemented to formulate core–shell nanoparticles.•Chitosan and hyaluronic acid were employed to modify the surface of hybrid solid lipid nanoparticles.•The engineered nanoparticles enhance the circulation half-life and decrease the elimination of the loade...

Full description

Saved in:
Bibliographic Details
Published inCarbohydrate polymers Vol. 102; pp. 653 - 661
Main Authors Ramasamy, Thiruganesh, Tran, Tuan Hiep, Choi, Ju Yeon, Cho, Hyuk Jun, Kim, Jeong Hwan, Yong, Chul Soon, Choi, Han-Gon, Kim, Jong Oh
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 15.02.2014
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:•Layer-by-layer technique was successfully implemented to formulate core–shell nanoparticles.•Chitosan and hyaluronic acid were employed to modify the surface of hybrid solid lipid nanoparticles.•The engineered nanoparticles enhance the circulation half-life and decrease the elimination of the loaded drug.•These structures have the potential to act as a vehicle to deliver medication to targeted tumor regions. Polyelectrolyte multilayers created via sequential adsorption of complimentary materials may be useful in the delivery of small molecules such as anti-cancer drugs. In this study, layer-by-layer (LbL) nanoarchitectures were prepared by step-wise deposition of naturally derived chitosan and hyaluronic acid on negatively charged hybrid solid lipid nanoparticles (SLNs). A doxorubicin/dextran sulfate complex was incorporated into the SLNs. This resulted in the production of spherical nanoparticles ∼265nm in diameter, with a zeta potential of approximately −12mV. The nanoparticles were physically stable and exhibited controlled doxorubicin (DOX) release kinetics. Further pharmacokinetic manipulations revealed that in comparison with both free DOX and uncoated DOX-loaded SLNs, LbL-functionalized SLNs remarkably enhanced the circulation half-life and decreased the elimination rate of the drug. Cumulatively, our results suggest that this novel LbL-coated system, with a pH-responsive shell and molecularly targeted entities, has the potential to act as a vehicle to deliver medication to targeted tumor regions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0144-8617
1879-1344
DOI:10.1016/j.carbpol.2013.11.009