A Sparse Hierarchical hp-Finite Element Method on Disks and Annuli

We develop a sparse hierarchical hp -finite element method ( hp -FEM) for the Helmholtz equation with variable coefficients posed on a two-dimensional disk or annulus. The mesh is an inner disk cell (omitted if on an annulus domain) and concentric annuli cells. The discretization preserves the Fouri...

Full description

Saved in:
Bibliographic Details
Published inJournal of scientific computing Vol. 104; no. 2; p. 51
Main Authors Papadopoulos, Ioannis P. A., Olver, Sheehan
Format Journal Article
LanguageEnglish
Published New York Springer US 01.08.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We develop a sparse hierarchical hp -finite element method ( hp -FEM) for the Helmholtz equation with variable coefficients posed on a two-dimensional disk or annulus. The mesh is an inner disk cell (omitted if on an annulus domain) and concentric annuli cells. The discretization preserves the Fourier mode decoupling of rotationally invariant operators, such as the Laplacian, which manifests as block diagonal mass and stiffness matrices. Moreover, the matrices have a sparsity pattern independent of the order of the discretization and admit an optimal complexity factorization. The sparse hp -FEM can handle radial discontinuities in the right-hand side and in rotationally invariant Helmholtz coefficients. Rotationally anisotropic coefficients that are approximated by low-degree polynomials in Cartesian coordinates also result in sparse linear systems. e consider examples such as a high-frequency Helmholtz equation with radial discontinuities and rotationally anisotropic coefficients, singular source terms, țhe time-dependent Schrödinger equation, and an extension to a three-dimensional cylinder domain, with a quasi-optimal solve, via the Alternating Direction Implicit (ADI) algorithm.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0885-7474
1573-7691
DOI:10.1007/s10915-025-02964-4