Fully amorphous atactic and isotactic block copolymers and their self-assembly into nano- and microscopic vesicles

The introduction of chirality into aqueous self-assemblies by employing isotactic block copolymers (BCPs) is an emerging field of interest as it promises special membrane properties of polymersomes not accessible by atactic BCPs. However, isotactic BCPs typically exhibit crystalline behaviour, induc...

Full description

Saved in:
Bibliographic Details
Published inPolymer chemistry Vol. 12; no. 37; pp. 5377 - 5389
Main Authors Wehr, Riccardo, dos Santos, Elena C, Muthwill, Moritz S, Chimisso, Vittoria, Gaitzsch, Jens, Meier, Wolfgang
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 28.09.2021
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The introduction of chirality into aqueous self-assemblies by employing isotactic block copolymers (BCPs) is an emerging field of interest as it promises special membrane properties of polymersomes not accessible by atactic BCPs. However, isotactic BCPs typically exhibit crystalline behaviour, inducing high membrane stiffness and limiting their applicability in systems involving membrane proteins or sensitive cargo. In this study, an isotactic yet fully amorphous BCP is introduced which overcomes these limitations. Three BCPs composed of poly(butylene oxide)- block -poly(glycidol) (PBO- b -PG), differing solely in their tacticities ( R / S , R and S ), were synthesised and characterised regarding their structural, optical and thermal properties. Their self-assembly into homogenous phases of nanoscopic polymersomes (referred to as small unilamellar vesicles, SUVs) was analysed, revealing stability differences between SUVs composed of the different BCPs. Additionally, microscopic giant unilamellar vesicles (GUVs) were prepared by double emulsion microfluidics. Only the atactic BCP formed GUVs which were stable over several hours, whereas GUVs composed of isotactic BCPs ruptured within several minutes after formation. The ability of atactic PBO- b -PG to form microreactors was elucidated by reconstituting the membrane protein OmpF in the GUV membrane by microfluidics and performing an enzyme reaction inside its lumen. The system presented here serves as platform to design versatile vesicles with flexible membranes composed of atactic or isotactic BCPs. Hence, they allow for the introduction of chirality into nano- or microreactors which is a yet unstudied field and could enable special biotechonological applications. Analysis of the membrane properties and stability of fully amorphous small and giant unilamellar vesicles composed of atactic or isotactic poly(butylene oxide)- block -poly(glycidol) (PBO- b -PG) amphiphilic diblock copolymers.
Bibliography:b
PMOXA GUVs. In addition, videos of time lapses of
R
S
10.1039/d1py00952d
PMOXA GUVs with and without OmpF. See DOI
Electronic supplementary information (ESI) available: Details about materials and syntheses, polymer and self-assembly characterisation as well as CLSM images of the enzyme reaction within PDMS-
/
BCP GUVs with and without OmpF and PDMS-
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1759-9954
1759-9962
DOI:10.1039/d1py00952d