Case generation using rough sets with fuzzy representation

We propose a rough-fuzzy hybridization scheme for case generation. Fuzzy set theory is used for linguistic representation of patterns, thereby producing a fuzzy granulation of the feature space. Rough set theory is used to obtain dependency rules which model informative regions in the granulated fea...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on knowledge and data engineering Vol. 16; no. 3; pp. 293 - 300
Main Authors Pal, S.K., Pabitra Mitra
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2004
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We propose a rough-fuzzy hybridization scheme for case generation. Fuzzy set theory is used for linguistic representation of patterns, thereby producing a fuzzy granulation of the feature space. Rough set theory is used to obtain dependency rules which model informative regions in the granulated feature space. The fuzzy membership functions corresponding to the informative regions are stored as cases along with the strength values. Case retrieval is made using a similarity measure based on these membership functions. Unlike the existing case selection methods, the cases here are cluster granules and not sample points. Also, each case involves a reduced number of relevant features. These makes the algorithm suitable for mining data sets, large both in dimension and size, due to its low-time requirement in case generation as well as retrieval. Superiority of the algorithm in terms of classification accuracy and case generation and retrieval times is demonstrated on some real-life data sets.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1041-4347
1558-2191
DOI:10.1109/TKDE.2003.1262181