Access to thermally robust and abrasion resistant antimicrobial plastics: synthesis of UV-curable phosphonium small molecule coatings and extrudable additives

The threat of antibiotic-resistant, biofilm-forming bacteria necessitates a preventative approach to combat the proliferation of robust, pathogenic strains on "high touch surfaces" in the food packaging, biomedical, and healthcare industries. The development of both biocide-releasing and t...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 11; no. 1; pp. 5548 - 5555
Main Authors Bedard, Joseph, Caschera, Alexander, Foucher, Daniel A
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 29.01.2021
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The threat of antibiotic-resistant, biofilm-forming bacteria necessitates a preventative approach to combat the proliferation of robust, pathogenic strains on "high touch surfaces" in the food packaging, biomedical, and healthcare industries. The development of both biocide-releasing and tethered, immobilized biocide surface coatings has risen to meet this demand. While these surface coatings have demonstrated excellent antimicrobial efficacy, there are few examples of antimicrobial surfaces with long-term durability and performance. To this end, UV-curable phosphoniums bearing benzophenone anchors with either an alkyl, aryl, or fluoroalkyl group were synthesized and their efficacy as thermally stable antimicrobial additives in extruded plastics or as surface attached coatings probed. The surface topology and characteristics of these materials were studied to gain insight into the mechanism of their antimicrobial activity. Efficacy against both Gram negative and Gram positive bacteria as either a coating or additive showed compete reductions of the initial bacterial load. Crucially, the materials maintained the ability to kill biofilm-forming bacteria even after being subject to several cycles of abrasion. Thermally robust UV-curable phosphoniums can be utilized as chemically bound surface coatings or as additives in extruded plastics to create an antimicrobial shield on high contact surfaces.
Bibliography:Electronic supplementary information (ESI) available: All experimental detail, molecular characterization data. See DOI
10.1039/d1ra00555c
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2046-2069
2046-2069
DOI:10.1039/d1ra00555c