Bioluminescence resonance energy transfer identify scaffold protein CNK1 interactions in intact cells

Connector enhancer of KSR (CNK) proteins have been proposed to act as scaffolds in the Ras-MAPK pathway. In this work, using in vivo bioluminescence resonance energy transfer (BRET) assays and in vitro co-immunoprecipitation, we show that hCNK1 interacts with the active form of Rho A (G14V) proteins...

Full description

Saved in:
Bibliographic Details
Published inFEBS letters Vol. 579; no. 3; pp. 648 - 654
Main Authors Lopez-Ilasaca, Marco A., Bernabe-Ortiz, Julio C., Na, Soon-Young, Dzau, Victor J., Xavier, Ramnik J.
Format Journal Article
LanguageEnglish
Published England Elsevier B.V 31.01.2005
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Connector enhancer of KSR (CNK) proteins have been proposed to act as scaffolds in the Ras-MAPK pathway. In this work, using in vivo bioluminescence resonance energy transfer (BRET) assays and in vitro co-immunoprecipitation, we show that hCNK1 interacts with the active form of Rho A (G14V) proteins. The domain of hCNK1 that allows binding to Rho proteins involves the C-terminal PH domain. Overexpression of hCNK1 does not affect the actin cytoskeleton and does not modify the appearance of stress fibers in cells overexpressing a constitutively active form of RhoA. In contrast, hCNK1 was able to significantly decrease the RhoA-induced transcriptional activity of the serum response element (SRE) without effect on the Ras-induced SRE activation. These results identify hCNK1 as a specific partner of Rho proteins both in vitro and in vivo and suggest a role of hCNK1 in the signal transduction of Rho proteins.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0014-5793
1873-3468
DOI:10.1016/j.febslet.2004.12.039