Convergent evolution of toxin resistance in animals

ABSTRACT Convergence is the phenomenon whereby similar phenotypes evolve independently in different lineages. One example is resistance to toxins in animals. Toxins have evolved many times throughout the tree of life. They disrupt molecular and physiological pathways in target species, thereby incap...

Full description

Saved in:
Bibliographic Details
Published inBiological reviews of the Cambridge Philosophical Society Vol. 97; no. 5; pp. 1823 - 1843
Main Authors Thiel, Jory, Khan, Muzaffar A., Wouters, Roel M., Harris, Richard J., Casewell, Nicholas R., Fry, Bryan G., Kini, R. Manjunatha, Mackessy, Stephen P., Vonk, Freek J., Wüster, Wolfgang, Richardson, Michael K.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:ABSTRACT Convergence is the phenomenon whereby similar phenotypes evolve independently in different lineages. One example is resistance to toxins in animals. Toxins have evolved many times throughout the tree of life. They disrupt molecular and physiological pathways in target species, thereby incapacitating prey or deterring a predator. In response, molecular resistance has evolved in many species exposed to toxins to counteract their harmful effects. Here, we review current knowledge on the convergence of toxin resistance using examples from a wide range of toxin families. We explore the evolutionary processes and molecular adaptations driving toxin resistance. However, resistance adaptations may carry a fitness cost if they disrupt the normal physiology of the resistant animal. Therefore, there is a trade‐off between maintaining a functional molecular target and reducing toxin susceptibility. There are relatively few solutions that satisfy this trade‐off. As a result, we see a small set of molecular adaptations appearing repeatedly in diverse animal lineages, a phenomenon that is consistent with models of deterministic evolution. Convergence may also explain what has been called ‘autoresistance’. This is often thought to have evolved for self‐protection, but we argue instead that it may be a consequence of poisonous animals feeding on toxic prey. Toxin resistance provides a unique and compelling model system for studying the interplay between trophic interactions, selection pressures and the molecular mechanisms underlying evolutionary novelties.
Bibliography:Jory van Thiel and Muzaffar A. Khan contributed equally to this work.
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:1464-7931
1469-185X
DOI:10.1111/brv.12865