Fracture care using percutaneously applied titanium mesh cages (OsseoFix®) for unstable osteoporotic thoracolumbar burst fractures is able to reduce cement-associated complications--results after 12 months

Despite the known demographic shift with expected doubled rate of vertebral body fractures by the year 2050, a standardized treatment concept for traumatic and osteoporotic incomplete burst fracture of the truncal spine does not exist. This study aims to determine whether minimally invasive fracture...

Full description

Saved in:
Bibliographic Details
Published inJournal of orthopaedic surgery and research Vol. 10; no. 1; p. 175
Main Authors Ender, Stephan Albrecht, Eschler, Anica, Ender, Michaela, Merk, Harry Rudolf, Kayser, Ralph
Format Journal Article
LanguageEnglish
Published England BioMed Central 14.11.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Despite the known demographic shift with expected doubled rate of vertebral body fractures by the year 2050, a standardized treatment concept for traumatic and osteoporotic incomplete burst fracture of the truncal spine does not exist. This study aims to determine whether minimally invasive fracture care for incomplete osteoporotic thoracolumbar burst fractures using intravertebral expandable titanium mesh cages is a suitable procedure and may provide improved safety in terms of cement-associated complications in comparison to kyphoplasty procedure. In 2011/2012, 15 patients (10 women, 5 men; mean age 77) with 15 incomplete osteoporotic thoracolumbar burst fractures (T10 to L4) were stabilized using intravertebral expandable titanium mesh cages (OsseoFix®) as part of a prospective study. X-ray, MRI and bone density measurements (DXA) were performed preinterventionally. The clinical and radiological results were evaluated preoperatively, postoperatively and after 12 months according to the visual analogue scale (VAS), the Oswestry Disability Index (ODI), X-ray (Beck Index, Cobb angle) and CT analyses. Wilcoxon rank sum test, sign test and Fischer's exact test were used for statistical evaluation. A significant reduction in pain intensity (VAS) from preoperative 8.0 to 1.6 after 12 months and significant improvement in activity level (ODI) from preoperative 79.0 to 30.5 % after 12 months were revealed. Radiologically, the mean kyphotic angle according to Cobb showed significant improvements from preoperative 9.1° to 8.0° after 12 months. A vertebral body subsidence was revealed in only one case (6.7 %). No changes in the position of the posterior wall were revealed. No cement leakage or perioperative complications were seen. As a safe and effective procedure, the use of intravertebral expandable titanium mesh cages presents a valuable alternative to usual intravertebral stabilization procedures for incomplete osteoporotic burst fractures and bears the potential to reduce cement-associated complications. German Clinical Trials Register (DKRS) DRKS00008833 .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1749-799X
1749-799X
DOI:10.1186/s13018-015-0322-5